Phases

Name -	
--------	--

Part 1

- 1.) Classify each of the following as either a chemical change or a physical change.
 - a.) the formation of fog <u>Physical</u>

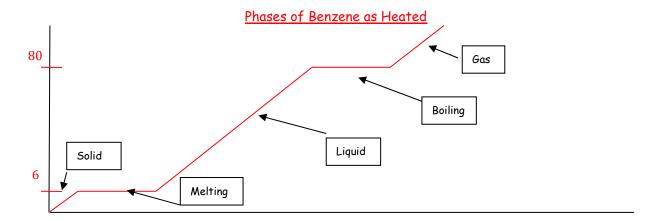
d.) the rusting of iron ___Chemical___

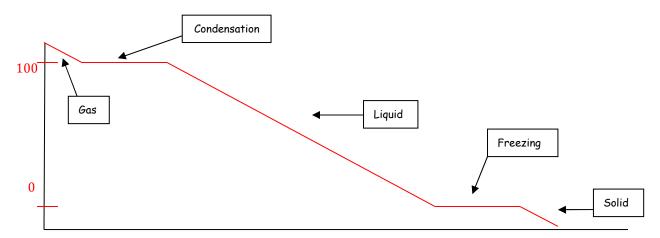
green paint ____Physical___

b.) burning of marshmallows <u>Chemical</u>

e.) mixing yellow and blue paint to make

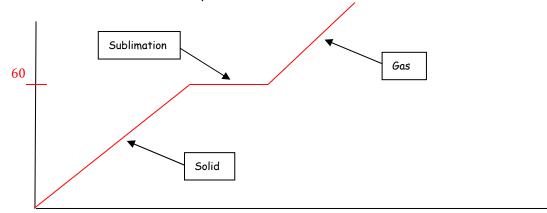
c.) separating an alcohol-water mixture into water and alcohol ___Physical__


- f.) the sprouting of a seed ___Chemical___
- 2.) Describe the changes in particle motion and arrangement for each of the six phase changes.
 - a.) <u>Melting</u> <u>solid</u> = particles touching, highly organized, vibrating, e_{vibe}, and e_{trans} with e_{trans} increasing the most.
 - to $\underline{\text{liquid}}$ = particles touching, not organized, sliding past each other with e_{vibe} and e_{trans} , and e_{rot} .
 - b.) Freezing $\underline{\text{liquid}}$ = particles touching, not organized, sliding past each other with e_{vibe} , and e_{trans} , and e_{rot} with e_{trans} decreasing the most.
 - to <u>solid</u> = particles touching, highly organized, vibrating, evibe and etrans.
 - c.) Evaporation $\frac{\text{liquid}}{\text{liquid}}$ = particles touching, not organized, sliding past each other with e_{vibe} , and e_{trans} , and e_{rot} with e_{trans} increasing the most.
 - to \underline{gas} = particles far apart, not organized, bouncing off each other with e_{vibe} , e_{trans} , and e_{rot} .
 - d.) <u>Condensation</u> gas = particles far apart, not organized, bouncing around each other with e_{vibe} , e_{trans} , and e_{rot} , with e_{trans} decreasing the most.
 - to $\frac{\text{liquid}}{\text{e}^{\text{trans}}}$ = particles touching, not organized, sliding past each other with e_{vibe} , e_{trans} , and e_{rot} .
 - e.) <u>Sublimation</u> $\frac{\text{solid}}{\text{solid}}$ = particles touching, highly organized, vibrating, e_{vibe} , and e_{trans} with e_{trans} increasing the most.


- to gas = particles far apart, not organized, bouncing off each other with e_{vibe} , e_{trans} , and e_{rot} .
- f.) <u>Deposition</u> gas = far apart, not organized, bouncing off each other with e_{vibe} , e_{trans} , and e_{rot} with e_{trans} decreasing the most.
 - to \underline{solid} = particles touching, highly organized, vibrating, e_{vibe} , and e_{trans} .

<u>Part 2</u> - Give the following graphs a meaningful title, label the axes and indicate the phases present on each portion of the graph. No scale needs to be specified for the time axis.

3.) Benzene melts at 6° C and boils at 80° C. Plot a graph showing the temperature vs. time behaviour of benzene as its temperature is raised from 0° C to 100° C.



4.) Water freezes at 0° C and boils at 100° C. Plot a graph showing the temperature vs. time behaviour of steam as its temperature is lowered from 120° C to -20° C.

KEY

5.) Ammonium carbamate sublimes at 60° C. Plot a graph showing the temperature vs. time behaviour of ammonium carbamate as its temperature is raised from 0° C to 100° C.

Phases

Name -	
--------	--

Part 1

- 1.) Classify each of the following as either a chemical change or a physical change.
 - a.) the formation of fog <u>Physical</u>

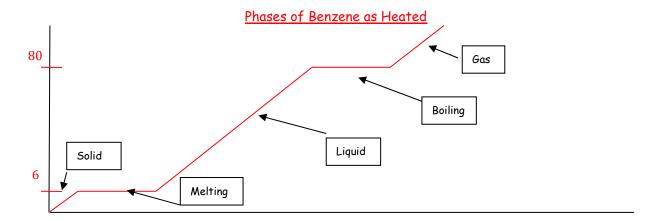
d.) the rusting of iron ___Chemical___

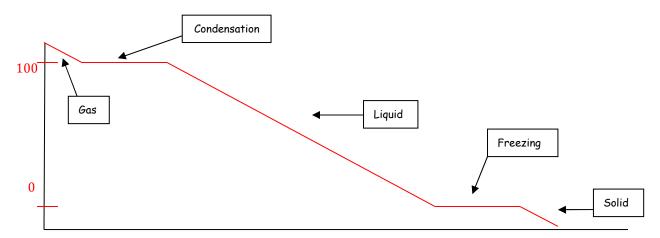
green paint ____Physical___

b.) burning of marshmallows <u>Chemical</u>

e.) mixing yellow and blue paint to make

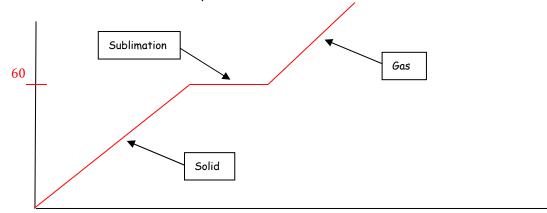
c.) separating an alcohol-water mixture into water and alcohol ___Physical__


- f.) the sprouting of a seed ___Chemical___
- 2.) Describe the changes in particle motion and arrangement for each of the six phase changes.
 - a.) <u>Melting</u> <u>solid</u> = particles touching, highly organized, vibrating, e_{vibe}, and e_{trans} with e_{trans} increasing the most.
 - to $\underline{\text{liquid}}$ = particles touching, not organized, sliding past each other with e_{vibe} and e_{trans} , and e_{rot} .
 - b.) Freezing $\underline{\text{liquid}}$ = particles touching, not organized, sliding past each other with e_{vibe} , and e_{trans} , and e_{rot} with e_{trans} decreasing the most.
 - to <u>solid</u> = particles touching, highly organized, vibrating, evibe and etrans.
 - c.) Evaporation $\frac{\text{liquid}}{\text{liquid}}$ = particles touching, not organized, sliding past each other with e_{vibe} , and e_{trans} , and e_{rot} with e_{trans} increasing the most.
 - to \underline{gas} = particles far apart, not organized, bouncing off each other with e_{vibe} , e_{trans} , and e_{rot} .
 - d.) <u>Condensation</u> gas = particles far apart, not organized, bouncing around each other with e_{vibe} , e_{trans} , and e_{rot} , with e_{trans} decreasing the most.
 - to $\frac{\text{liquid}}{\text{e}^{\text{trans}}}$ = particles touching, not organized, sliding past each other with e_{vibe} , e_{trans} , and e_{rot} .
 - e.) <u>Sublimation</u> $\frac{\text{solid}}{\text{solid}}$ = particles touching, highly organized, vibrating, e_{vibe} , and e_{trans} with e_{trans} increasing the most.


- to gas = particles far apart, not organized, bouncing off each other with e_{vibe} , e_{trans} , and e_{rot} .
- f.) <u>Deposition</u> gas = far apart, not organized, bouncing off each other with e_{vibe} , e_{trans} , and e_{rot} with e_{trans} decreasing the most.
 - to \underline{solid} = particles touching, highly organized, vibrating, e_{vibe} , and e_{trans} .

<u>Part 2</u> - Give the following graphs a meaningful title, label the axes and indicate the phases present on each portion of the graph. No scale needs to be specified for the time axis.

3.) Benzene melts at 6° C and boils at 80° C. Plot a graph showing the temperature vs. time behaviour of benzene as its temperature is raised from 0° C to 100° C.



4.) Water freezes at 0° C and boils at 100° C. Plot a graph showing the temperature vs. time behaviour of steam as its temperature is lowered from 120° C to -20° C.

KEY

5.) Ammonium carbamate sublimes at 60° C. Plot a graph showing the temperature vs. time behaviour of ammonium carbamate as its temperature is raised from 0° C to 100° C.

