\qquad

Circuits Review

1.) In an electric circuit, 6.25×10^{18} electrons flow past one point in 0.10 s . What is the current?
$6.25 \times 10^{18} \times 10=6.25 \times 10^{19} \frac{\text { elctrons }}{s}$
$1 C=6.24 \times 10^{18} \frac{\text { electrons }}{s}$
$I=\frac{6.25 \times 10^{11}}{6.24 \times 10^{18}}$
$\underline{I=10.0 \mathrm{~A}}$
2.) What current would be drawn from the power supply in the circuit shown below?
$\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \quad \frac{1}{R_{p}}=\frac{1}{35}+\frac{1}{22} \quad R_{p}=13.51 \Omega$
$V=I R \quad 6.0=I \times 13.51 \quad \underline{I}=0.44 \mathrm{~A}$

3.) A student needs to connect a voltmeter to measure the potential difference across the parallel resistors in the circuit shown right. Across which two connection points should the student connect the voltmeter? WX/WY

4.) A circuit junction is shown below. What is the current and its direction through the 5.0Ω resistor? B

Kirchhoff's law says "current into ajunction equals current out of the junction"
A.

CURRENT	DIRECTION
0.32 A	away from junction
0.32 A	towards the junction
2.24 A	away from junction
2.24 A	towards the junction

5.) What power is dissipated by the 15Ω resistor in the circuit shown?

$$
P=I^{2} R
$$

$$
P=(0.20)^{2}(15)
$$

$$
\underline{R}=0.60 \Omega
$$

6.) A student is instructed to determine the amount of charge flowing past a point in a circuit of unknown resistance during an experiment. What equipment will permit the student to do this?
a.) voltmeter
b.) ammeter, voltmeter
c.) ammeter, stopwatch
d.) voltmeter, stopwatch
7.) A series circuit consists of a battery and three resistors arranged as shown in the diagram below. What is the potential difference $V_{x y}$?

$$
V_{t}=V_{1}+V_{2} \quad V_{t}=6+15 \quad \underline{V_{t}}=21 \mathrm{~V}
$$

8.) A 12 V battery is connected to a $20 . \Omega$ resistor. How much charge flows through the battery in 3.5 s ? $V=I R \quad 12=I \times 20 . \quad I=0.60 A$ $I=\frac{Q}{t} \quad 0.60=\frac{Q}{3.5} \quad Q=2.1 C$
9.) Which of the following relationships correctly applies to the circuit shown? A
A. $V_{0}=V_{1}+V_{2}+V_{3}$
B. $V_{0}+V_{1}=V_{2}+V_{3}$
C. $V_{0}=V_{1}=V_{2}=V_{3}$
D. $\frac{1}{V_{0}}=\frac{1}{V_{1}}+\frac{1}{V_{2}}+\frac{1}{V_{3}}$
10.) In the following circuit, what current is drawn from the battery?

$\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \quad \frac{1}{R_{p}}=\frac{1}{10}+\frac{1}{10} \quad R_{p}=5.0 \Omega$
$R_{S}=R_{1}+R_{2}+R_{3} \quad R_{s}=10+5+10 \quad R_{p}=25 \Omega$
$V=I R \quad 50=I \times 25 . \quad \underline{I=2.0 A}$

11.) A 75 W bulb is connected across a 120 V source. While the bulb is lighted, what is the effective resistance of the bulb?
a.) 0.62Ω
b.) 1.6Ω
$P=\frac{V^{2}}{R} \quad 75=\frac{120^{2}}{R} . \quad \underline{I=192 \Omega}$
c.) 47Ω
d.) 190Ω

