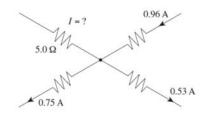
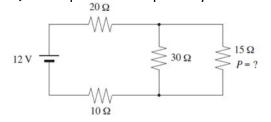

Circuits Review

- 1.) In an electric circuit, 6.25×10^{18} electrons flow past one point in 0.10 s. What is the current?
- 2.) What current would be drawn from the power supply in the circuit shown below?

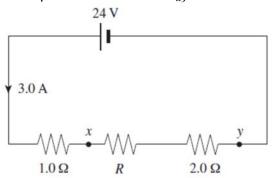


3.) A student needs to connect a voltmeter to measure the potential difference across the parallel resistors in the circuit shown right. Across which two connection points should the student connect the voltmeter?



4.) A circuit junction is shown below. What is the current and its direction through the 5.0Ω resistor?

CURRENT	DIRECTION
0.32 A	away from junction
0.32 A	towards the junction
2.24 A	away from junction
2.24 A	towards the junction

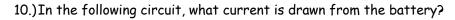


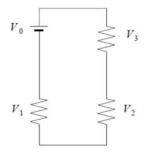
5.) What power is dissipated by the 15Ω resistor in the circuit shown?

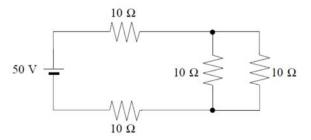
- 6.) A student is instructed to determine the amount of charge flowing past a point in a circuit of unknown resistance during an experiment. What equipment will permit the student to do this?
 - a.) voltmeter
 - b.) ammeter, voltmeter
 - c.) ammeter, stopwatch
 - d.) voltmeter, stopwatch

7.) A series circuit consists of a battery and three resistors arranged as shown in the diagram below. What is the potential difference V_{xy} ?

8.) A 12 V battery is connected to a 20 Ω resistor. How much charge flows through the battery in 3.5 s?


9.) Which of the following relationships correctly applies to the circuit shown?


A.
$$V_0 = V_1 + V_2 + V_3$$


B.
$$V_0 + V_1 = V_2 + V_3$$

C.
$$V_0 = V_1 = V_2 = V_3$$

D. $\frac{1}{V_0} = \frac{1}{V_1} + \frac{1}{V_2} + \frac{1}{V_3}$

- 11.) A 75 W bulb is connected across a 120 V source. While the bulb is lighted, what is the effective resistance of the bulb?
 - **a.)** 0.62 Ω
 - b.) 1.6 Ω
 - **c.)** 47 Ω
 - d.) 190 Ω

Answers: 1.) 10 A, 2.) 0.44A, 3.) W&X or W&Y, 4.) B, 5.) 0.6 W, 7.) 21 V, 8.) 2.1 C, 9.) A, 10.) 2.0 A, 11.) D