1.) Determine the equivalent (total) resistance for each of the following circuits below.

a.)	$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n} \qquad \frac{1}{R_p} = \frac{1}{7} + \dots$	$\frac{1}{5} + \frac{1}{2}$	$\frac{1}{R_p} = 1.18 \Omega$
b.)	$R_s = R_1 + R_2 + R_3 \dots + R_n$	$R_s = 5 + 2$	$R_s = 7 \ \Omega$
c.)	$R_s = R_1 + R_2 + R_3 \dots + R_n$	$R_s = 5 + 2 + 7$	$R_s = 14 \Omega$

- 2.) Determine the total voltage (electric potential) for each of the following circuits below. a.) Add the voltages = 13V
 - b.) Add the voltages = 12V

<u>Circuit</u> <u>Position</u>	<u>Voltage (V)</u>	<u>Current (A)</u>	<u>Resistance (Ω)</u>
1	1.0	0.10	10.0
2	2.0	0.10	20.0
3	3.0	0.10	30.0
Total	6.00	0.10	60.0

3.) Fill out the table for the circuit diagramed at the right.

4.) Fill out the table for the circuit diagramed at the right.

<u>Circuit</u> Position	<u>Voltage (V)</u>	<u>Current (A)</u>	<u>Resistance (Ω)</u>
1	6.00	0.60	10.0
2	6.00	0.30	20.0
3	6.00	0.20	30.0
Total	6.00	1.1	5.45

Questions 6 and 7 refer to the following:

battery.

The diagram to the right represents an electric

circuit consisting of four resistors and a 12-volt

<u>Circuit</u> <u>Position</u>	<u>Voltage (V)</u>	<u>Current (A)</u>	<u>Resistance (Ω)</u>
1	2.73	0.273	10.0
2	3.27	0.164	20.0
3	3.27	0.109	30.0
Total	6.00	0.273	22.0

1

6.) What is the equivalent resistance of the circuit shown?

$$= \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n} \qquad \frac{1}{R_p} = \frac{1}{6} + \frac{1}{12} + \frac{1}{36} + \frac{1}{18} \qquad \frac{1}{R_p} = 2.77 \ \Omega$$

7.) What is the current measured by ammeter A shown in the diagram? V = IR 12 = I6.0 I = 2.0 A

8.) A 6.0 Ω lamp requires 0.25 A of current to operate. In which circuit below would the lamp operate correctly when switch S is closed?

Questions 9 and 10 refer to the following:

A 50. Ω resistor, an unknown resistor R, a 120.V source, and an ammeter are connected in a complete circuit. The ammeter reads 0.50 A.

9.) Calculate the equivalent resistance of the circuit shown. V = IR 120 = 0.50R $R = 240. \Omega$

10.) Determine the resistance of resistor R shown in the diagram. $R_s = R_1 + R_2 \dots + R_n$ 240. = 50. + R $R_s = 190.\Omega$

Questions 11 through 13 refer to the following:

A 3.0 Ω resistor, an unknown resistor, R, and two ammeters, A_1 and A_2 , are connected as shown below with a 12 V source. Ammeter A_2 reads a current of 5.0 A.

- 11.) Determine the equivalent resistance of the circuit shown. V = IR 12 = 5.0R $R = 2.4 \Omega$
- 12.) Calculate the current measured by anymeter A_1 in the diagram shown. V = IR $12 = I \times 3.0$ I = 4.0 A
- 13.) Calculate the resistance of the unknown resistor, R in the diagram shown.

$$\frac{1}{R_p} = \frac{1}{R_1} + \dots + \frac{1}{R_p} \qquad \frac{1}{2.4} = \frac{1}{R} + \frac{1}{3} \qquad R_p = 12 \ \Omega$$

14.) The load across a 50.0 V battery consists of a series combination of two lamps with resistances

of 125 \varOmega , and 225 \varOmega .

- a. Find the total resistance of the circuit. $R_s = R_1 + R_2 \dots + R_n$ $R_s = 125 + 225$ $R_s = 350.\Omega$
- b. Find the current in the circuit. V = IR 50.0 = 1350. I = 0.143 Ac. Find the potential difference across the 125 Ω lamp. V = IR V = (0.143)(125) I = 17.9 V
- 15.) The load across a 12 V battery consists of a series combination of three resistances. They are 15Ω , 21Ω , and 24Ω , respectively.
 - a. Draw the circuit diagram.
 - b. What is the total resistance of the load? $R_s = R_1 + R_2 \dots + R_n$ $R_s = 15 + 21 + 24$ $R_s = 60.\Omega$ c. What is the magnitude of the circuit current? V = IR $12 = I \times 60.$ I = 0.20 A
- 16.) The load across a 40 V battery consists of a series combination of three resistances R_1 , R_2 , and R_3 . R_1 is 240. Ω and R_3 is 120. Ω . The potential difference across R_1 is 24 V.
 - a. Find the current in the circuit.
 V = IR 24 = I × 240. I = 0.10 A
 b. Find the equivalent resistance of the circuit.
 - V = IR $40 = 0.10 \times R$ $R = 400 \Omega$ c. Find the resistance of R₂.
- R_s = R₁ + R₂...+R_n 400 = 240 + 120 + R₂ R₂ = 40.Ω
 17.) The load across a 12 V battery consists of a series combination of three resistances R₁, R₂, and R₃. R₁ is 210.Ω, R₂ is 350.Ω, and R₃ is 120.Ω.
 - a. Find the equivalent resistance of the circuit. $R_s = R_1 + R_2 \dots + R_n$ $R_s = 210.+350.+120.$ $R_2 = 680.\Omega$ b. Find the current in the circuit. V = IR $12 = I \times 680.$ I = 0.018 A
 - c. Find the potential difference across R_3 . V = IR $V = 0.01764 \times 120$ V = 2.12 V
- 18.) Two resistances, one 12 Ω and the other 18 Ω , are connected in parallel. What is the equivalent resistance of the parallel combination?

 $\frac{1}{R_p} = \frac{1}{R_1} + \dots + \frac{1}{R_n} \qquad \frac{1}{R_n} = \frac{1}{12} + \frac{1}{18} \qquad R_p = 7.2 \ \Omega$

19.) Three resistances of 12 \varOmega each are connected in parallel. What is the equivalent resistance?

$$\frac{1}{R_p} = \frac{1}{R_1} + \dots + \frac{1}{R_n} \qquad \frac{1}{R_p} = \frac{1}{12} + \frac{1}{12} + \frac{1}{12} \qquad R_p = 4.0 \ \Omega$$

- 20.) Two resistances, one 62 Ω and the other 88 Ω , are connected in parallel. The resistors are then connected to a 12 V battery.
 - a. What is the equivalent resistance of the parallel combination?

 $\frac{1}{R_p} = \frac{1}{R_1} + ... + \frac{1}{R_n} \qquad \frac{1}{R_p} = \frac{1}{62} + \frac{1}{88} \qquad R_p = 36 \ \Omega$ b. What is the current through each resistor? $V = IR \qquad 12 = (I)(62) \qquad I = 0.19 \ A$ $V = IR \qquad 12 = (I)(88) \qquad I = 0.14 \ A$

- 21.) A 110. V household circuit that contains an 1800. W microwave, a 1000. W toaster, and an 800. W coffeemaker is connected to a 20. A fuse. Determine the current. Will the fuse melt if the microwave and the coffeemaker are both on? P = VI 2600 = (110.)(I) I = 23.6 AYes, 20 A fuse is too small.
- 22.) A 35 Ω , 55 Ω , and 85 Ω resistor are connected in parallel. The resistors are then connected to a 35 V battery.
 - a. What is the equivalent resistance of the parallel combination?

 $\frac{1}{R_p} = \frac{1}{R_1} + \dots + \frac{1}{R_n} \qquad \frac{1}{R_p} = \frac{1}{35} + \frac{1}{55} + \frac{1}{55} \qquad R_p = 17 \ \Omega$

- b. What is the current through each resistor? V = IR 35 = $I \times 35$. I = 1.0 A V = IR 35 = $I \times 55$. I = 0.64 AV = IR 35 = $I \times 85$. I = 0.41 A
- 23.) Resistors R_1 , R_2 , and R_3 have resistances of 15.0 Ω , 9.0 Ω , and 8.0 Ω respectively. R_1 and R_2 are connected in series, and their combination is in parallel with R_3 to form a load across a 6.0 V battery.
 - a. Draw the circuit diagram.

Rig ZR3 Rz

- b. What is the total resistance of the load?
- $\frac{1}{R_p} = \frac{1}{R_1} + \ldots + \frac{1}{R_n} \qquad \frac{1}{R_p} = \frac{1}{24} + \frac{1}{80} \quad R_p = 6.0 \,\Omega$ c. What is the current in R₃?
 - V = IR 6.0 = $I \times 8.0$. I = 0.75 A
- d. What is the potential difference across R₂? V = IR $V = 0.25 \times 9.0$ V = 2.25 V
- 24.) A 15.0 \varOmega resistor is connected in series to a 120 V generator and two 10.0 \varOmega resistors that are connected in parallel to each other.

a. Draw the circuit diagram.

<u>KEY</u>

- b. What is the total resistance of the load? $R_s = R_1 + R_2 \dots + R_n$ $R_s = 15 + 5$ $R_s = 20.\Omega$
- c. What is the magnitude of the circuit current? V = IR $120 = I \times 20$. I = 6.0 A
- d. What is the current in one of the 10.0Ω resistors?

V = IR 30 = $I \times 10$. I = 3.0 A

e. What is the potential difference across the 15.0 Ω resistor? V = IR $V = 15.0 \times 6.0$ V = 90.0 V

<u>Answers</u>

711300013		
1a) 1.2 Ω	1b) 7 Ω	1c) 14 \varOmega
2a) 13 V	2b) 12 V	6) 3.0 Ω
7) 2.0 A	8) C	9) 240. Ω
10) 190 Ω	11) 2.4 Ω	12) 4.0 A
13) 12 Ω	14a) 350.Ω	14b) 0.143 A
14c) 17.9 V	15b) 60.Ω	15c) 0.20 A
16a) 0.10 A	16b) 400.Ω	16c) 40. Ω
17a) 680.Ω	17b) 0.018 A	17c) 2.1 V
18) 7.2 Ω	19) 4.0 Ω	20a) 36 $arOmega$
20b) 62 $\Omega = 0.1$	$9 A; 88 \Omega = 0.14 A$	
21) $I = 23.6 A science$	o fuse will pop	22a) 17 $arOmega$
22b) $I35 \Omega = 1.0$	$0 A; I55 \Omega = 0.64 A; I85 \Omega$	2 = 0.41 A
23b) 6.0 Ω	23c) 0.75 A	23d) 2.3 V
24b) 20.0 Ω	24c) 6.0 A	24d) 3.0 A
24e) 90.V		