Circuits Practice

1.) Determine the equivalent (total) resistance for each of the following circuits below.
a.) $\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots+\frac{1}{R_{n}} \quad \frac{1}{R_{p}}=\frac{1}{7}+\frac{1}{5}+\frac{1}{2} \quad \frac{1}{R_{p}}=1.18 \Omega$
b.) $R_{s}=R_{1}+R_{2}+R_{3} \ldots+R_{n}$
$R_{s}=5+2$
$R_{S}=7 \Omega$
c.) $R_{s}=R_{1}+R_{2}+R_{3} \ldots+R_{n}$
$R_{S}=5+2+7$
$R_{S}=14 \Omega$
2.) Determine the total voltage (electric potential) for each of the following circuits below.
a.) Add the voltages $=13 \mathrm{~V}$
b.) Add the voltages $=12 \mathrm{~V}$
3.) Fill out the table for the circuit diagramed at the right.

Circuit Position	Voltage (V)	Current (A)	Resistance (Ω)
1	1.0	0.10	10.0
2	2.0	0.10	20.0
3	3.0	0.10	30.0
Total	6.00	0.10	60.0

4.) Fill out the table for the circuit diagramed at the right.

Circuit Position	$\underline{\text { Voltage (V) }}$	$\frac{\text { Current (A) }}{}$	Resistance (Ω)
1	6.00	0.60	10.0
2	6.00	0.30	20.0
3	6.00	0.20	30.0
Total	6.00	1.1	5.45

5.) Fill out the table for the circuit diagramed at the right.

$\frac{\text { Circuit }}{\text { Position }}$	$\underline{\text { Voltage (V) }}$	$\frac{\text { Current (A) }}{}$	Resistance (Ω)
1	2.73	0.273	10.0
2	3.27	0.164	20.0
3	3.27	0.109	30.0
Total	6.00	0.273	22.0

Questions 6 and 7 refer to the following:

The diagram to the right represents an electric circuit consisting of four resistors and a 12 -volt battery.

6.) What is the equivalent resistance of the circuit shown? $\quad \frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots+\frac{1}{R_{n}} \quad \frac{1}{R_{p}}=\frac{1}{6}+\frac{1}{12}+\frac{1}{36}+\frac{1}{18} \quad \frac{1}{R_{p}}=2.77 \Omega$
7.) What is the current measured by ammeter \boldsymbol{A} shown in the diagram? $V=I R \quad 12=I 6.0 \quad I=2.0 \mathrm{~A}$
8.) A 6.0Ω lamp requires 0.25 A of current to operate. In which circuit below would the lamp operate correctly when switch S is closed?

C)

B)

D)

Answer - C

Questions 9 and 10 refer to the following:

A $50 . \Omega$ resistor, an unknown resistor R, a $120 . \mathrm{V}$ source, and an ammeter are connected in a complete circuit. The ammeter reads 0.50 A .

9.) Calculate the equivalent resistance of the circuit shown. $V=I R \quad 120=0.50 R \quad R=240 . \Omega$
10.) Determine the resistance of resistor R shown in the diagram. $R_{s}=R_{1}+R_{2} \ldots+R_{n} \quad 240 .=50 .+R \quad R_{s}=190 . \Omega$

Questions 11 through 13 refer to the following:
A 3.0Ω resistor, an unknown resistor, R, and two ammeters, A_{1} and A_{2}, are connected as shown below with a 12 V source. Ammeter A_{2} reads a current of 5.0 A .

11.) Determine the equivalent resistance of the circuit shown.

$$
V=I R \quad 12=5.0 R \quad R=2.4 \Omega
$$

12.) Calculate the current measured by ammeter A_{1} in the diagram shown.

$$
V=I R \quad 12=I \times 3.0 \quad I=4.0 \mathrm{~A}
$$

13.) Calculate the resistance of the unknown resistor, R in the diagram shown.

$$
\frac{1}{R_{p}}=\frac{1}{R_{1}}+\ldots+\frac{1}{R_{n}} \quad \frac{1}{2.4}=\frac{1}{R}+\frac{1}{3} \quad R_{p}=12 \Omega
$$

14.) The load across a 50.0 V battery consists of a series combination of two lamps with resistances of 125Ω, and 225Ω.
a. Find the total resistance of the circuit.
$R_{s}=R_{1}+R_{2} \ldots+R_{n}$
$R_{s}=125+225$
$R_{s}=350 . \Omega$
b. Find the current in the circuit.

$$
V=I R \quad 50.0=I 350 . \quad I=0.143 A
$$

c. Find the potential difference across the 125Ω lamp.

$$
V=I R \quad V=(0.143)(125) \quad I=17.9 V
$$

15.) The load across a $12 V$ battery consists of a series combination of three resistances. They are $15 \Omega, 21 \Omega$, and 24Ω, respectively.
a. Draw the circuit diagram.
b. What is the total resistance of the load? $R_{s}=R_{1}+R_{2} \ldots+R_{n} \quad R_{s}=15+21+24 \quad R_{s}=60 . \Omega$
c. What is the magnitude of the circuit current?

$$
V=I R \quad 12=I \times 60 . \quad I=0.20 A
$$

16.) The load across a $40 V$ battery consists of a series combination of three resistances R_{1}, R_{2}, and R_{3}. R_{1} is $240 . \Omega$ and R_{3} is $120 . \Omega$. The potential difference across R_{1} is 24 V .
a. Find the current in the circuit.

$$
V=I R \quad 24=I \times 240 . \quad I=0.10 A
$$

b. Find the equivalent resistance of the circuit.

$$
V=I R \quad 40=0.10 \times R \quad R=400 \Omega
$$

c. Find the resistance of R_{2}.

$$
R_{s}=R_{1}+R_{2} \ldots+R_{n} \quad 400=240+120+R_{2} \quad R_{2}=40 . \Omega
$$

17.) The load across a $12 V$ battery consists of a series combination of three resistances R_{1}, R_{2}, and R_{3}. R_{1} is $210 . \Omega, R_{2}$ is $350 . \Omega$, and R_{3} is $120 . \Omega$. a. Find the equivalent resistance of the circuit. $R_{s}=R_{1}+R_{2} \ldots+R_{n} \quad R_{s}=210 .+350 .+120 . \quad R_{2}=680 . \Omega$ b. Find the current in the circuit. $V=I R \quad 12=I \times 680 . \quad I=0.018 A$ c. Find the potential difference across R_{3}. $V=I R \quad V=0.01764 \times 120 . \quad V=2.12 V$
18.) Two resistances, one 12Ω and the other 18Ω, are connected in parallel. What is the equivalent resistance of the parallel combination?

$$
\frac{1}{R_{p}}=\frac{1}{R_{1}}+\ldots+\frac{1}{R_{n}} \quad \frac{1}{R_{p}}=\frac{1}{12}+\frac{1}{18} \quad R_{p}=7.2 \Omega
$$

19.) Three resistances of 12Ω each are connected in parallel. What is the equivalent resistance?

$$
\frac{1}{R_{p}}=\frac{1}{R_{1}}+\ldots+\frac{1}{R_{n}} \quad \frac{1}{R_{p}}=\frac{1}{12}+\frac{1}{12}+\frac{1}{12} \quad R_{p}=4.0 \Omega
$$

20.) Two resistances, one 62Ω and the other 88Ω, are connected in parallel. The resistors are then connected to a 12 V battery.
a. What is the equivalent resistance of the parallel combination?

$$
\frac{1}{R_{p}}=\frac{1}{R_{1}}+\ldots+\frac{1}{R_{n}} \quad \frac{1}{R_{p}}=\frac{1}{62}+\frac{1}{88} \quad R_{p}=36 \Omega
$$

b. What is the current through each resistor?

$$
\begin{array}{lll}
V=I R & 12=(I)(62) & I=0.19 A \\
V=I R & 12=(I)(88) & I=0.14 A
\end{array}
$$

21.) A $110 . \mathrm{V}$ household circuit that contains an 1800. W microwave, a $1000 . W$ toaster, and an 800. W coffeemaker is connected to a 20. A fuse. Determine the current. Will the fuse melt if the microwave and the coffeemaker are both on?
$P=V I \quad 2600=(110).(I)$
Yes, 20 A fuse is too small.
22.) A $35 \Omega, 55 \Omega$, and 85Ω resistor are connected in parallel. The resistors are then connected to a 35 V battery.
a. What is the equivalent resistance of the parallel combination?
$\frac{1}{R_{p}}=\frac{1}{R_{1}}+\ldots+\frac{1}{R_{n}} \quad \frac{1}{R_{p}}=\frac{1}{35}+\frac{1}{55}+\frac{1}{55} \quad R_{p}=17 \Omega$
b. What is the current through each resistor?

$$
\begin{array}{lll}
V=I R & 35=I \times 35 . & I=1.0 \mathrm{~A} \\
V=I R & 35=I \times 55 . & I=0.64 \mathrm{~A} \\
V=I R & 35=I \times 85 . & I=0.41 \mathrm{~A}
\end{array}
$$

23.) Resistors R_{1}, R_{2}, and R_{3} have resistances of $15.0 \Omega, 9.0 \Omega$, and 8.0Ω respectively. R_{1} and R_{2} are connected in series, and their combination is in parallel with R_{3} to form a load across a 6.0 V battery.
a. Draw the circuit diagram.

b. What is the total resistance of the load? $\frac{1}{R_{p}}=\frac{1}{R_{1}}+\ldots+\frac{1}{R_{n}} \quad \frac{1}{R_{p}}=\frac{1}{24}+\frac{1}{8.0} \quad R_{p}=6.0 \Omega$
c. What is the current in R_{3} ?

$$
V=I R \quad 6.0=I \times 8.0 . \quad I=0.75 \mathrm{~A}
$$

d. What is the potential difference across R_{2} ?

$$
V=I R \quad \dot{V}=0.25 \times 9.0 \quad V=2.25 \mathrm{~V}
$$

24.) A 15.0Ω resistor is connected in series to a 120 V generator and two 10.0Ω resistors that are connected in parallel to each other.
a. Draw the circuit diagram.

b. What is the total resistance of the load?
$R_{s}=R_{1}+R_{2} \ldots+R_{n} \quad R_{s}=15+5 \quad R_{s}=20 . \Omega$
c. What is the magnitude of the circuit current?
$V=I R \quad 120=I \times 20 . \quad I=6.0 \mathrm{~A}$
d. What is the current in one of the 10.0Ω resistors?
$V=I R \quad 30=I \times 10 . \quad I=3.0 \mathrm{~A}$
e. What is the potential difference across the 15.0Ω resistor?
$V=I R \quad V=15.0 \times 6.0 \quad V=90.0 V$

Answers

1a) 1.2Ω	1b) 7Ω	1c) 14Ω
2a) 13 V	2b) 12 V	6) 3.0Ω
7) 2.0 A	8) C	9) $240 . \Omega$
10) 190Ω	11) 2.4Ω	12) 4.0 A
13) 12Ω	14a) $350 . \Omega$	14b) 0.143 A
14c) 17.9 V	15b) $60 . \Omega$	15c) 0.20 A
16a) 0.10 A	16b) $400 . \Omega$	16c) $40 . \Omega$
17a) $680 . \Omega$	17b) 0.018 A	17c) 2.1 V
18) 7.2Ω	19) 4.0Ω	20a) 36Ω
20b) $62 \Omega=0.19 \mathrm{~A} ; 88 \Omega=0.14 \mathrm{~A}$		
21) $I=23.6 A$ so fuse will pop	22a) 17Ω	
22b) $I 35 \Omega=1.0 \mathrm{~A}$; I55 $\Omega=0.64 \mathrm{~A} ; I 85 \Omega=0.41 \mathrm{~A}$		
23b) 6.0Ω	23c) 0.75 A	23d) 2.3 V
24b) 20.0Ω	24c) 6.0 A	24d) 3.0 A
24e) $90 . \mathrm{V}$		

