## Energy Changes in Chemical Reactions

Name - $\qquad$
1.) You can think of this reaction, $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$, as occurring in two steps (it doesn't go this way, but it is convenient to think of it this way).

Step 1- $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{C}+4 \mathrm{H}+4 \mathrm{O}$ (the reactants are broken down to individual atoms)
Step 2-C $+4 \mathrm{H}+4 \mathrm{O} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ (the individual atoms are assembled into products)
a.) Does step 1 absorb or give off energy? absorb
b.) Does step 2 absorb or give off energy? give off
c.) Since the overall reaction is exothermic, which step involves more energy, step 1 or 2 ?

Step 2
2.) The energy needed to break an $\mathrm{H}-\mathrm{Cl}$ bond is 432 kJ . $2 \mathrm{HCl}+432 \mathrm{~kJ} \rightarrow \mathrm{H}_{2}+\mathrm{Cl}_{2}$ How many kilojoules of energy are given off in the following reaction? Why?

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{HCl}+432 \_\mathrm{kJ}
$$

Answer - The two reactions are the exact opposite of each other.
3.) Is the burning of wood exothermic or endothermic?

Answer - exothermic as heat (energy) is produced.
4.) Is the melting of sugar exothermic or endothermic?

Answer - endothermic as heat (energy) is absorbed by the sugar to change phases.
5.) A beaker becomes warm when a reaction occurs in it. Are the chemicals in the beaker gaining or losing energy? Is the reaction endothermic or exothermic?

Answer - losing energy. Exothermic as energy is released (lost).
6.) Which contains more energy in an endothermic reaction, the reactants or products?

Answer - products. The reactants gain energy to become high energy products.
7.) In an exothermic reaction, do you have to add or remove energy in order to allow particles to form?

Answer - remove energy from reactants as lower erngy products are formed.

8a.) Is $\Delta H>0$ or $\Delta H<0$ for an endothermic reaction?
$H_{\text {reactants }}<H_{\text {products }}$ and $\Delta H=H_{p}-H_{r}$
b.) Is $\Delta H>0$ or $\Delta H<0$ for an exothermic reaction? $\Delta H<0$
9.) Draw an energy diagram having $\Delta H=+25 k J$.

10.) Draw and energy diagram having $\Delta H=-50 \mathrm{~kJ}$.

11.) $\Delta H=-50 \mathrm{~kJ}$ for the reaction $\mathrm{F} \rightarrow \mathrm{G}$. Re-write this equation to show the 50 kJ properly on the reactant or product side.

Answer - $\quad F \rightarrow G+50 \mathrm{~kJ}$
12.) If a reaction absorbs 30 kJ of heat, what is the $\Delta H$ for the reaction?

$$
\Delta H=+30 k J
$$

13.) If $P \rightarrow Q+25 k J$, what is the $\Delta H$ for the reaction? Which have more energy, the reactants or products? $\quad \Delta H=-25 \mathrm{~kJ} \quad$ reactants have more energy.

