1.) Write the hydrolysis of a salt reaction in water and discern if the solution is acidic, basic, or neutral.

a.) LiBr LiBr \rightarrow Li⁺ + Br⁻ neither undergoes hydrolysis as both ions are spectators as they come from strong acids or bases.

b.)
$$K_2CO_3$$
 $K_2CO_3 \leftrightarrow K^+ + CO_3^{-2}$ $CO_3^{-2} + H_2O \leftrightarrow HCO_3 + OH^-$

Basic

c.) Na₂HC₆H₅O₇ Na₂HC₆H₅O₇
$$\leftrightarrow$$
 2Na⁺ + HC₆H₅O₇⁻² this is amphiprotic!!!!
acting as an acid HC₆H₅O₇⁻² + H₂O \Rightarrow C₆H₅O₇⁻³ + H₃O⁺ $K_a = 4.1 \times 10^{-7}$
acting as a base HC₆H₅O₇⁻² + H₂O \Rightarrow H₂C₆H₅O₇⁻ + OH⁻
Which one???
 $K_a \times K_b = K_w$ 7.1 × 10⁻⁴ × $K_b = 1.00 \times 10^{-14}$ $K_b = 1.4 \times 10^{-11}$
 $K_a > K_b = K_a$ it acts as an acid!!!
d.) NH₄F NH₄F \leftrightarrow NH₄⁺ + F⁻ F⁻ + H₂O \leftrightarrow HF + OH⁻ and NH₄⁺ + H₂O \leftrightarrow NH₃ + H₃O
 $K_a = 5.6 \times 10^{-10}$ $K_a \times K_b = K_w$ 3.5 × 10⁻⁴ × $K_b = 1.00 \times 10^{-14}$ $K_b = 2.9 \times 10^{-11}$
 $K_a(NH_4^+) > K_b(F^-) = more OH^- made than H_3O^+$ it acts as an acid!!!

2.) Why are the following two solutions both only slightly basic: $0.1 M NaNO_2$ and saturated $Fe(OH)_3$?

 $NaNO_2 \leftrightarrow Na^+ + NO_2^ NO_2^- + H_2O \leftrightarrow HCO_2 + OH^-$ weak base = low {OH⁻]

 $Fe(OH)_{3 (s)} \leftrightarrow Fe^{+3} + 3OH^{-}$ strong base so complete dissociation BUT $Fe(OH)_{3}$ is **low solubility**!!!

3.) Arrange the following from highest pH to lowest pH: NH4Cl, HCl, NaCH3COO, NH4CH3COO, NaOH.

NaOH strong base Final answer = NaOH, NaCH₃COO, NH₄CH₃COO, NH₄Cl, HCl