Practice - Equilibrium Constants

1.) What are the concentrations of hydronium and hydroxide in pure water?
$\begin{array}{lllr}\text { Answer - } & K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] & K_{w}=[x][x] & 1.00 \times 10^{-14}=x^{2} \\ & x=1.00 \times 10^{-7} \mathrm{M} & {\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-7} \mathrm{M}} & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.00 \times 10^{-7} \mathrm{M}}\end{array}$
2.) When water is heated;
a.) What happens to the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?

$$
\text { Answer - increases (remember Le Chatelier). } \quad \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}+59 \mathrm{~J}
$$

b.) Is this hot water acidic, basic, or neutral?

Answer - neutral. Both the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$increase equally keeping water neutral.
c.) What happens o the K_{w} when the water is heated?

Answer - increases.
3.) Determine what the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in the following solutions.
a.) 4.0 M HCl

$$
\begin{gathered}
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad 1.00 \times 10^{-14}=[4.0][x] \\
x=2.5 \times 10^{-15} \mathrm{M}
\end{gathered}
$$

$$
\left[\mathrm{OH}^{-}\right]=2.5 \times 10^{-15} \mathrm{M} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.0 \mathrm{M}
$$

c.) $0.0050 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\begin{aligned}
& K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad 1.00 \times 10^{-14}=[0.0050][x] \\
& x=2.0 \times 10^{-12} \mathrm{M} \\
& \quad\left[\mathrm{OH}^{-}\right]=2.0 \times 10^{-12} \mathrm{M} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.0 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

b.) $8.0 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$
d.) 0.15 M NaOH

$$
\begin{gathered}
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad 1.00 \times 10^{-14}=[x][8.0] \\
x=1.25 \times 10^{-15} \mathrm{M} \\
{\left[O \mathrm{H}^{-}\right]=8.0 \mathrm{M} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.25 \times 10^{-15} \mathrm{M}}
\end{gathered}
$$

$$
\begin{gathered}
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad 1.00 \times 10^{-14}=[x][0.15] \\
x=2.5 \times 10^{-15} \mathrm{M}
\end{gathered}
$$

$$
\left[\mathrm{OH}^{-}\right]=0.15 \mathrm{M} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=6.7 \times 10^{-14} \mathrm{M}
$$

4.) Write the acid ionization constant expression for the below reactions when the chemical is acting as an acid with water.
a.) HF
Answer - $\quad K_{a}=\frac{\left[F^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[H F]}$
b.) HPO_{4}^{-2}
Answer - $\quad K_{a}=\frac{\left[\mathrm{PO}_{4}^{-3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HPO}_{4}^{-2}\right]}$
c.) HIO_{3}
Answer - $\quad K_{a}=\frac{\left[\mathrm{IO}_{3}{ }^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HIO}_{3}\right]}$
5.) Write the base ionization constant expression for the below reactions when the chemical is acting as a base with water.
a.) CN^{-}
Answer - $\quad K_{b}=\frac{\left[\mathrm{HCN}^{-}\left[\mathrm{OH}^{-}\right]\right.}{\left[\mathrm{CN}^{-}\right]}$
b.) $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$
c.) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
Answer - $\quad K_{b}=\frac{\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]}$
Answer - $\quad K_{b}=\frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}$
6.) Calculate the K_{b} for the following bases.
a.) $\mathrm{SO}_{4}^{-2} K_{a} \times K_{b}=K_{w} \quad 2.0 \times 10^{-2} \times K_{b}=1.00 \times 10^{-14}$
d.) $\mathrm{HO}_{2}^{-} \quad K_{a} \times K_{b}=K_{w} \quad 2.4 \times 10^{-12} \times K_{b}=1.00 \times 10^{-14}$

$$
\underline{K_{b}}=5.0 \times 10^{-13} \quad \underline{K_{b}}=4.2 \times 10^{-3}
$$

b.) $\mathrm{HS}^{-} K_{a} \times K_{b}=K_{w} \quad 9.1 \times 10^{-8} \times K_{b}=1.00 \times 10^{-14}$
e.) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-} K_{a} \times K_{b}=K_{w}$

$$
\underline{K_{b}}=1.1 \times 10^{-7} \quad 6.5 \times 10^{-5} \times K_{b}=1.00 \times 10^{-14} \quad \underline{K_{b}}=1.5 \times 10^{-10}
$$

c.) $\mathrm{HCO}_{3}{ }^{-} K_{a} \times K_{b}=K_{w} 4.3 \times 10^{-7} \times K_{b}=1.00 \times 10^{-14}$ f.) $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2} K_{a} \times K_{b}=K_{w} 6.4 \times 10^{-5} \times K_{b}=1.00 \times 10^{-14}$

$$
K_{b}=2.3 \times 10^{-8}
$$

$$
\underline{K}_{b}=1.6 \times 10^{-10}
$$

7.) If $K_{b}=1.7 \times 10^{-6}$ for $\mathrm{N}_{2} \mathrm{H}_{4}$, what is the K_{a} for $\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}$? Answer - $\quad K_{a} \times K_{b}=K_{w} \quad K_{a} \times 1.7 \times 10^{-6}=1.00 \times 10^{-14} \quad \underline{K_{b}}=5.9 \times 10^{-9}$
8.) If a substance has a $K_{b}=2.0 \times 10^{-10}$, is the substance a weak acid, weak base, strong acid, or a strong base? Explain.

Answer - Weak base. Strong acids and bases completely ionize and have no K_{a} / K_{b} value and since the k_{b} is given it must act as a base.
9.) Write the acid/base equilibrium that would occur for the following pairs, including labels for the acid/base conjugate pairs.
a.) CO_{3}^{-2} and HF
b.) $\mathrm{H}_{3} \mathrm{PO}_{4}$ or HS^{-}
c.) HSO_{3}^{-}or OH^{-}
d.) HCOOH or CN^{-}

10.) Are reactants or products favoured in the following equilibrium equations?
a.) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{HS}^{-}+\mathrm{NH}_{4}{ }^{+}$products
c.) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{SO}_{3}^{-2} \rightleftharpoons \mathrm{HO}_{2}^{-}+\mathrm{HSO}_{3}^{-}$reactants
b.) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{HS}^{-} \rightleftharpoons \mathrm{HPO}_{4}^{-2}+\mathrm{H}_{2} \mathrm{~S}$ reactants
d.) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{PO}_{4}^{-3} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{HPO}_{4}{ }^{-2}$ products
11.) Write the equilibrium reactions when the following are put into water, and predict if reactants or products are favoured.
a.) HSO_{4}^{-}and NO_{2}^{-}
b.) $\mathrm{H}_{3} \mathrm{PO}_{4}$ and HPO_{4}^{-2}
c.) HCO_{3}^{-}and HSO_{3}^{-}
d.) $\mathrm{HSO}_{3}{ }^{-}$and $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$
e.) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

Answer -	$\mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{-} \leftrightarrow \mathrm{SO}_{4}^{-2}+\mathrm{HNO}_{2}$	products
Answer -	$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{HPO}_{4}^{-2} \leftrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	products
Answer -	$\mathrm{HCO}_{3}^{-}+\mathrm{HSO}_{3}^{-} \leftrightarrow \mathrm{SO}_{3}^{-2}+\mathrm{H}_{2} \mathrm{CO}_{3}$	reactants
Answer -	$\mathrm{HSO}_{3}^{-}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-} \leftrightarrow \mathrm{C}_{2} \mathrm{O}_{4}^{-2}+\mathrm{H}_{2} \mathrm{SO}_{3}$	reactants
Answer -	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{NH}_{4}^{+}+\mathrm{CO}_{3}^{-2}$ (salts)	
	$\mathrm{NH}_{4}^{+}+\mathrm{CO}_{3}^{-2} \leftrightarrow \mathrm{NH}_{3}+\mathrm{HCO}_{3}^{-}$	products

12.) $K_{e q}=14$ at equilibrium.
$\mathrm{H}_{2} \mathrm{Te}+\mathrm{HSe}^{-} \rightleftharpoons \mathrm{HTe}^{-}+\mathrm{H}_{2} \mathrm{Se}$
a.) Which acid is stronger?
Answer - $\mathrm{H}_{2} \mathrm{Te}$
b.) Which base is stronger?

$$
\text { Answer - } \mathrm{HSe}^{-}
$$

c.) From your previous answers, fill in the blanks below with the following terms: Stronger acid, weaker acid, Stronger base, weaker base.

$$
\ldots \text { Stronger acid__ +_Stronger base__ } \rightleftharpoons \text { _ weaker base__ + _ weaker acid__ }
$$

13.)

$$
\begin{array}{lll}
\mathrm{HOI}+\mathrm{H}_{2} \mathrm{GeO}_{4}^{-} \rightleftharpoons \mathrm{OI}^{-}+\mathrm{H}_{3} \mathrm{GeO}_{4} & ; K_{e q}=8.8 \times 10^{-3} & \mathrm{HOI}<\mathrm{H}_{3} \mathrm{GeO}_{4} \\
\mathrm{HOCl}+\mathrm{OBr}^{-} \rightleftharpoons \mathrm{OCl}^{-}+\mathrm{HOBr} & ; K_{e q}=14 & \mathrm{HOCl}>\mathrm{HOBr} \\
\mathrm{HOBr}+\mathrm{H}_{2} \mathrm{GeO}_{4}^{-} \rightleftharpoons \mathrm{OBr}^{-}+\mathrm{H}_{3} \mathrm{GeO}_{4} ; K_{e q}=7.9 \times 10^{2} & \mathrm{HOBr}>\mathrm{H}_{3} \mathrm{GeO}_{4}
\end{array}
$$

Arrange the four acids from strongest to weakest.

$$
-\mathrm{HOCl}_{-},-\underline{\mathrm{HOBr}}-\mathrm{H}_{3} \mathrm{GeO}_{4}-\mathrm{HOI}
$$

14.) Three different acids are: $\mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}$, and HCOOH . Which would form an equilibrium with F^{-}in which the reactants are favoured? Explain.

Answer - $\quad \mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{F}^{-} \leftrightarrow \mathrm{HSO}_{3}^{-}+\mathrm{HF}$
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{F}^{-} \leftrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{HF}$
$\mathrm{HCOOH}+\mathrm{F}^{-} \leftrightarrow \mathrm{HCOO}^{-}+\mathrm{HF} \quad \mathrm{HF}$ is a stronger acid than $\mathrm{HCOOH} \therefore$ so favours reactants!

