Practice - Equilibrium Constants

1.) What are the concentrations of hydronium and hydroxide in pure water?

<u>Answer</u> - $K_w = [H_3 O^+][OH^-]$ $K_w = [x][x]$ $1.00 \times 10^{-14} = x^2$ $x = 1.00 \times 10^{-7} M$ $[OH^-] = 1.00 \times 10^{-7} M$ $[H_3 O^+] = 1.00 \times 10^{-7} M$

- 2.) When water is heated;
 - a.) What happens to the $[H_3O^+]$?

<u>Answer</u> - increases (remember Le Chatelier). $H^{+}_{(aq)} + OH^{-}_{(aq)} \rightleftharpoons H_2O_{(l)} + 59J$

b.) Is this hot water acidic, basic, or neutral?

<u>Answer</u> - neutral. Both the $[H_3O^+]$ and $[OH^-]$ increase equally keeping water neutral.

c.) What happens o the K_w when the water is heated?

<u>Answer</u> - increases.

3.) Determine what the $[H_3O^+]$ and $[OH^-]$ in the following solutions.

a.) 4.0 M HCl	c.) 0.0050 <i>M</i> H ₂ SO ₄
$K_w = [H_3 O^+][OH^-] \ 1.00 \times 10^{-14} = [4.0][x]$	$K_w = [H_3 0^+][0H^-]$ $1.00 \times 10^{-14} = [0.0050][x]$
$x = 2.5 \times 10^{-15} M$	$x = 2.0 \times 10^{-12} M$
$[OH^{-}] = 2.5 \times 10^{-15} M \qquad [H_3O^{+}] = 4.0 M$	$[OH^{-}] = 2.0 \times 10^{-12} M [H_3 O^{+}] = 5.0 \times 10^{-3} M$
b.) 8.0 M Mg(OH)₂	d.) 0.15 <i>M</i> NaOH
$K_w = [H_3 O^+][OH^-] \ 1.00 \times 10^{-14} = [x][8.0]$	$K_w = [H_3 0^+][0H^-]$ $1.00 \times 10^{-14} = [x][0.15]$
$x = 1.25 \times 10^{-15} M$	$x = 2.5 \times 10^{-15} M$
$[OH^{-}] = 8.0 M \qquad [H_3O^{+}] = 1.25 \times 10^{-15} M$	$[OH^-] = 0.15 M$ $[H_3O^+] = 6.7 \times 10^{-14} M$

- 4.) Write the acid ionization constant expression for the below reactions when the chemical is acting as an acid with water.
 - a.) HF <u>Answer</u> $K_a = \frac{[F^-][H_3O^+]}{[HF]}$ b.) HPO₄⁻² <u>Answer</u> - $K_a = \frac{[PO_4^{-3}][H_3O^+]}{[HPO_4^{-2}]}$ c.) HIO₃ <u>Answer</u> - $K_a = \frac{[IO_3^-][H_3O^+]}{[HIO_2]}$
- 5.) Write the base ionization constant expression for the below reactions when the chemical is acting as a base with water.

a.)
$$CN^{-}$$
 Answer - $K_b = \frac{[HCN][OH^{-}]}{[CN^{-}]}$

b.)
$$HC_2O_4^-$$
 Answer - $K_b = \frac{[H_2C_2O_4][OH^-]}{[HC_2O_4^-]}$

c.)
$$CH_3NH_2$$
 Answer - $K_b = \frac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}$

6.) Calculate the K_b for the following bases.

a.)
$$SO_{4}^{-2} K_{a} \times K_{b} = K_{w} 2.0 \times 10^{-2} \times K_{b} = 1.00 \times 10^{-14} \text{ d.}) HO_{2}^{-} K_{a} \times K_{b} = K_{w} 2.4 \times 10^{-12} \times K_{b} = 1.00 \times 10^{-14} \frac{K_{b} = 5.0 \times 10^{-13}}{10^{-13}}$$

b.) HS⁻ $K_{a} \times K_{b} = K_{w} 9.1 \times 10^{-8} \times K_{b} = 1.00 \times 10^{-14} \text{ e.}) C_{6}H_{5}COO^{-} K_{a} \times K_{b} = K_{w} \frac{K_{b} = 1.1 \times 10^{-7}}{10^{-7}}$
c.) HCO₃⁻ $K_{a} \times K_{b} = K_{w} 4.3 \times 10^{-7} \times K_{b} = 1.00 \times 10^{-14} \text{ f.}) C_{2}O_{4}^{-2} K_{a} \times K_{b} = K_{w} 6.4 \times 10^{-5} \times K_{b} = 1.00 \times 10^{-14} \frac{K_{b} = 2.3 \times 10^{-8}}{10^{-14}}$

7.) If $K_b = 1.7 \times 10^{-6}$ for N₂H₄, what is the K_a for N₂H₅⁺?

<u>Answer</u> - $K_a \times K_b = K_w$ $K_a \times 1.7 \times 10^{-6} = 1.00 \times 10^{-14}$ $K_b = 5.9 \times 10^{-9}$

8.) If a substance has a $K_b = 2.0 \times 10^{-10}$, is the substance a weak acid, weak base, strong acid, or a strong base? Explain.

<u>Answer</u> - Weak base. Strong acids and bases completely ionize and have no K_a/K_b value and since the k_b is given it must act as a base.

9.) Write the acid/base equilibrium that would occur for the following pairs, including labels for the acid/base conjugate pairs.

10.) Are reactants or products favoured in the following equilibrium equations?

a.) $H_2S + NH_3 \rightleftharpoons HS^- + NH_4^+$ products c.) $H_2O_2 + SO_3^{-2} \rightleftharpoons HO_2^- + HSO_3^-$ reactants b.) $H_2PO_4^- + HS^- \rightleftharpoons HPO_4^{-2} + H_2S$ reactants d.) $CH_3COOH + PO_4^{-3} \rightleftharpoons CH_3COO^- + HPO_4^{-2}$

products

<u>KEY</u>

<u>KEY</u>

11.) Write the equilibrium reactions when the following are put into water, and predict if reactants or products are favoured.

a.) HSO_4^- and NO_2^-	<u>Answer</u> -	$HSO_4^- + NO_2^- \leftrightarrow SO_4^{-2} + HNO_2$	products
b.) H_3PO_4 and HPO_4^{-2}	<u>Answer</u> -	H_3PO_4 + HPO_4^{-2} \leftrightarrow $H_2PO_4^{-}$ + $H_2PO_4^{-}$	products
c.) HCO_3^- and HSO_3^-	<u>Answer</u> -	HCO_3^- + $HSO_3^ \leftrightarrow$ SO_3^{-2} + H_2CO_3	reactants
d.) HSO_3^- and $HC_2O_4^-$	<u>Answer</u> -	HSO_3^- + $HC_2O_4^ \leftrightarrow$ $C_2O_4^{-2}$ + H_2SO_3	reactants
e.) (NH4)2CO3	<u>Answer</u> -	$(NH_4)_2CO_3 \rightarrow 2 NH_4^+ + CO_3^{-2}$ (salts)	
		$NH_4^+ + CO_3^{-2} \leftrightarrow NH_3 + HCO_3^{-1}$	products

- 12.) K_{eq} = 14 at equilibrium. H₂Te + HSe⁻ ≠ HTe⁻ + H₂Se
 a.) Which acid is stronger? <u>Answer</u> H₂Te
 b.) Which base is stronger? <u>Answer</u> HSe⁻
 - c.) From your previous answers, fill in the blanks below with the following terms: Stronger acid, weaker acid, Stronger base, weaker base.

13.)	$HOI + H_2GeO_4^- \rightleftharpoons OI^- + H_3GeO_4$; $K_{eq} = 8.8 \times 10^{-3}$	$HOI < H_3 GeO_4$
	$HOCI + OBr^- \rightleftharpoons OCI^- + HOBr$; $K_{eq} = 14$	HOCl > HOBr
	$HOBr + H_2GeO_4^- \rightleftharpoons OBr^- + H_3GeO_4^-$	D_4 ; $K_{eq} = 7.9 \times 10^2$	$HOBr > H_3GeO_4$

Arrange the four acids from strongest to weakest.

<u>HOCI, HOBr, H3GeO4, HOI</u>

14.) Three different acids are: H₂SO₃, H₃PO₄, and HCOOH. Which would form an equilibrium with F⁻ in which the reactants are favoured? Explain.

<u>Answer</u> -	$H_2SO_3 + F^- \leftrightarrow HSO_3^- + HF$		
	H_3PO_4 + $F^- \leftrightarrow H_2PO_4^-$ + HF		
	$\underline{HCOOH} + \underline{F} \leftrightarrow \underline{HCOO} + \underline{HF}$	HF is a stronger acid than HCOOH \therefore so favours reactants!	