Practice - Equilibrium Constants

1.) What are the concentrations of hydronium and hydroxide in pure water?
2.) When water is heated;
a.) What happens to the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?
b.) Is this hot water acidic, basic, or neutral?
c.) What happens o the K_{w} when the water is heated?
3.) Determine what the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in the following solutions.
a.) 4.0 M HCl
c.) $0.0050 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
b.) $8.0 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$
d.) 0.15 M NaOH
4.) Write the acid ionization constant expression for the below reactions when the chemical is acting as an acid with water.
a.) HF
b.) HPO_{4}^{-2}
c.) HIO_{3}
5.) Write the base ionization constant expression for the below reactions when the chemical is acting as a base with water.
a.) CN
b.) $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$
c.) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
6.) Calculate the K_{b} for the following bases.
a.) $\mathrm{SO}_{4}{ }^{-2}$
d.) HO_{2}^{-}
b.) HS^{-}
e.) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$
c.) HCO_{3}^{-}
f.) $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2}$
7.) If $K_{b}=1.7 \times 10^{-6}$ for $\mathrm{N}_{2} \mathrm{H}_{4}$, what is the K_{a} for $\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}$?
8.) If a substance has a K_{b} value of 2.0×10^{-10}, is the substance a weak acid, weak base. Strong acid, or a strong base? Explain.
9.) Write the acid/base equilibrium that would occur for the following pairs, including labels for the acid/base conjugate pairs.
a.) CO_{3}^{-2} and HF
b.) b.) $\mathrm{H}_{3} \mathrm{PO}_{4}$ or HS^{-}
c.) c.) HSO_{3}^{-}or OH^{-}
d.) d.) HCOOH or CN^{-}
10.) Are reactants or products favoured in the following equilibrium equations?
a.) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{HS}^{-}+\mathrm{NH}_{4}^{+}$
c.) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{SO}_{3}^{-2} \rightleftharpoons \mathrm{HO}_{2}^{-}+\mathrm{HSO}_{3}^{-}$
b.) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{HS}^{-} \rightleftharpoons \mathrm{HPO}_{4}^{-2}+\mathrm{H}_{2} \mathrm{~S}$
d.) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{PO}_{4}^{-3} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{HPO}_{4}^{-2}$
11.) Write the equilibrium reactions and predict if reactants or products are favoured.
a.) $\mathrm{H}_{2} \mathrm{SO}_{4}^{-}$and NO_{2}^{-}
b.) $\mathrm{H}_{3} \mathrm{PO}_{4}$ and HPO_{4}^{-2}
c.) HCO_{3}^{-}and $\mathrm{HSO}_{3}{ }^{-}$
d.) $\mathrm{HSO}_{3}{ }^{-}$and $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$
e.) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
12.) $\mathrm{K}_{\text {eq }}=14$ at equilibrium. $\mathrm{H}_{2} \mathrm{Te}+\mathrm{HSe}^{-} \rightleftharpoons \mathrm{HTe}^{-}+\mathrm{H}_{2} \mathrm{Se}$
a.) Which acid is stronger?
b.) Which base is stronger?
C.) From your previous answers, fill in the blanks below with the following terms: Stronger acid, weaker acid, stronger base, weaker base.
13.)
\qquad $+$ \qquad \rightleftharpoons \qquad $+$ \qquad

$$
\begin{array}{ll}
\mathrm{HOI}+\mathrm{H}_{2} \mathrm{GeO}_{4}^{-} \rightleftharpoons \mathrm{OI}^{-}+\mathrm{H}_{3} \mathrm{GeO}_{4} & ; K_{e q}=8.8 \times 10^{-3} \\
\mathrm{HOCl}+\mathrm{OBr}^{-} \rightleftharpoons \mathrm{OCl}^{-}+\mathrm{HOBr} & ; K_{e q}=14 \\
\mathrm{HOBr}+\mathrm{H}_{2} \mathrm{GeO}_{4}^{-} \rightleftharpoons \mathrm{OBr}^{-}+\mathrm{H}_{3} \mathrm{GeO}_{4} ; K_{e q}=7.9 \times 10^{2}
\end{array}
$$

Arrange the four acids from strongest to weakest.
14.) Three different acids are: $\mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}$, and HCOOH . Which would form an equilibrium with F^{-}in which the reactants are favoured? Explain.

