Buffers

1.) Explain if the following will form a buffer solution.
a.) 0.10 M KCN and 0.10 M HCN

Answer - Buffer. The solution contains appreciable amounts of a weak acid and its conjugate base.
b.) 1.0 M NaOH and 1.0 M NaCl

Answer - No Buffer. The solution contains appreciable amounts of a strong base and a salt.
c.) $1.0 \mathrm{M} \mathrm{HSO}_{4}^{-}$and 1.0 M HCl

Answer - No Buffer. The solution contains appreciable amounts of a weak acid and another strong acid.
d.) $2.0 \mathrm{M} \mathrm{HPO}_{4}^{-2}$ and $1.5 \mathrm{M} \mathrm{PO}_{4}{ }^{-3}$

Answer - Buffer. The solution contains appreciable amounts of a weak acid and its conjugate base.
2.) When comparing two solutions of buffers: $1 \mathrm{M} \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$with $1 \mathrm{M} \mathrm{HPO}_{4}{ }^{-2}$ and $0.1 \mathrm{M}_{2} \mathrm{PO}_{4}{ }^{-}$with $0.1 \mathrm{M} \mathrm{HPO}_{4}{ }^{-2}$, will the pH be different?

Answer - No, concentration has no effect on the pH of buffers. This is do to the ratio of acid/base being the same in both cases.
3.) How would a buffer solution be made to maintain a $p H=3.2$?

Answer - solve for $\mathrm{K}_{\mathrm{a}} . \quad p K_{a}=p H=$ antilog[-3.4] $\quad p K_{a}=3.98 \times 10^{-4}$. Use the K_{a} to find a suitable acid and the conjugate base to combine. Use 1.0 mol HF and 1.0 mol NaF in 1.0 L of water.
4.) If you have a 1.0 L buffer solution made of $0.10 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$ and $0.10 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COO}^{-}$, can you add 0.13 mol NaOH ?

Answer - No. The buffer solution only has 0.10 mol of acid to buffer the OH^{-}.
5.) How would a buffer solution of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-} / \mathrm{HPO}_{4}^{-2}$ react if an acid or base was added? Write the reactions.

Answer -

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HPO}^{-2}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \text {base added } \rightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} \leftrightarrow \mathrm{HPO}^{-2}+\mathrm{H}_{2} \mathrm{O} \\
& \text { acid added } \rightarrow \mathrm{HPO}_{4}^{-2}+\mathrm{H}_{3} \mathrm{O}^{+} \leftrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

