Buffers

- 1.) Explain if the following will form a buffer solution.
 - a.) 0.10 M KCN and 0.10 M HCN
 - Answer Buffer. The solution contains appreciable amounts of a weak acid and its conjugate base.
 - b.) 1.0 M NaOH and 1.0 M NaCl

Answer - No Buffer. The solution contains appreciable amounts of a strong base and a salt.

c.) 1.0 $M HSO_4^-$ and 1.0 M HCl

Answer - No Buffer. The solution contains appreciable amounts of a weak acid and another strong acid.

d.) 2.0 $M HPO_4^{-2}$ and 1.5 $M PO_4^{-3}$

Answer - Buffer. The solution contains appreciable amounts of a weak acid and its conjugate base.

2.) When comparing two solutions of buffers: $1 M H_2 P O_4^-$ with $1 M H P O_4^{-2}$ and $0.1 M H_2 P O_4^-$ with $0.1 M H P O_4^{-2}$, will the pH be different?

<u>Answer</u> - No, concentration has no effect on the pH of buffers. This is do to the ratio of acid/base being the same in both cases.

3.) How would a buffer solution be made to maintain a pH = 3.2?

<u>Answer</u> - solve for K_a. $pK_a = pH = antilog[-3.4]$ $pK_a = 3.98 \times 10^{-4}$. Use the K_a to find a suitable acid and the conjugate base to combine. Use 1.0 mol HF and 1.0 mol NaF in 1.0 L of water.

4.) If you have a 1.0 L buffer solution made of 0.10 mol CH₃COOH and 0.10 mol CH₃COO⁻, can you add 0.13 mol NaOH?

<u>Answer</u> - No. The buffer solution only has 0.10 mol of acid to buffer the OH⁻.

5.) How would a buffer solution of H₂PO₄^{-/}HPO₄⁻² react if an acid or base was added? Write the reactions.

Answer - $H_2PO_4^- + H_2O \leftrightarrow HPO4^{-2} + H_3O^+$ base added $\rightarrow H_2PO_4^- + OH^- \leftrightarrow HPO4^{-2} + H_2O$ acid added $\rightarrow HPO4^{-2} + H_3O^+ \leftrightarrow H_2PO_4^- + H_2O$