Review - Graphical Analysis

Intro to Kinematics:

1.) magnitude, magnitude, direction
2.) straight line
3.) Equal
4.) Vectors: displacement, force, $20 . \frac{\mathrm{m}}{\mathrm{s}}[\mathrm{N}]$, velocity, $50 . \mathrm{m}$ [down], $9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}[$ down], acceleration, $10 . \mathrm{km}[S W]$

Scalars: $1.0 \mathrm{~kg}, 10 . \frac{\mathrm{km}}{\mathrm{h}}$, distance, $200 \mathrm{~km}, 5.0 \mathrm{~h}, 40 . L$, mass, speed

Graphing Motion:

1.) Slope is the pitch or angle (steepness) of the line of a graph.

Zero

Negative
2.) Speed. Slope is rise/run and speed is distance/time.

Slope is rise/run and speed is metres/seconds.
3a.) no, y-intercepts are different
b.) $B \quad$ c.) A
d.) A has a steeper slope.
e.) A and B are at the same position.
4.) $2.5 \mathrm{~s}, 5.0 \mathrm{~s}, 20 . \mathrm{m}, 10 . \mathrm{m}, 4.0 \frac{\mathrm{~m}}{\mathrm{~s}}, 2.0 \frac{\mathrm{~m}}{\mathrm{~s}}$
5a.) $0 s, 31 s, 55 s$
b.) $15-20 s$
c.) $20 .-40 . s$
d.) $4.0 \frac{\mathrm{~m}}{\mathrm{~s}}, 5.0 \frac{\mathrm{~m}}{\mathrm{~s}}$
e.) $3.0 \frac{\mathrm{~m}}{\mathrm{~s}}$
f.) 0
6. The ball doesn't move at first. Then it moves backwards and then finally stops.
7.

8.

9.

