Dilution Calculations

- When two solutions are mixed, the resulting mixture has a total volume and total number of moles equal to the sum of the individual volumes and individual moles of the chemicals found in the separate solutions.
- Molarity of the mixture $=\frac{\text { total moles of chemical we are interested in }}{\text { total volume of solution }}$

Dilution of a Chemical in Solution

- When you add water to a chemical in solution you dilute the concentration. How do we find out what the concentration is now? $\quad \star * *$ Remember \rightarrow concentration $=\frac{\text { moles }}{\text { volume }} \quad \rightarrow \quad c=\frac{n}{v}$ or $n=c \times v$
- Here's what you do ...

Initial concentration of solution (concentrated form) $=C_{\text {conc }}$
Initial volume of solution (concentrated form) $=\quad V_{\text {conc }}$

Diluted concentration (after water added $)=\quad C_{\text {dil }}$
Diluted volume $($ after water added $)=\quad V_{\text {dil }}$

- So ... moles in concentrated solution $\rightarrow n_{\text {conc }}=C_{\text {conc }} \times V_{\text {conc }}$

$$
\text { moles in diluted solution } \quad \rightarrow n_{\text {dil }}=C_{d i l} \times V_{\text {dil }}
$$

- The amount of chemical (moles) is NOT changed when the solution is diluted, only concentration changes! moles of concentrated $=$ moles of diluted

$$
\begin{aligned}
& n_{\text {conc }}=n_{\text {dil }} \\
& C_{\text {conc }} \times V_{\text {conc }}=C_{\text {dil }} \times V_{\text {dil }} \quad \text { or } \quad C_{\text {dil }}=\frac{c_{\text {conc } \times V_{c o n c}}}{V_{\text {dil }}}
\end{aligned}
$$

Ex. - If 200.0 mL of 0.500 M NaCl is added to 300.0 mL of water, what is the resulting [NaCl]?

$$
\text { Answer - } \quad C_{d i l}=\frac{C_{c o n c} \times V_{c o n c}}{V_{\text {dil }}} \quad C_{\text {dil }}=\frac{(0.500)(0.200)}{(0.300+0.200)} \quad \underline{C}_{d i l}=0.200 \mathrm{M}
$$

Mixing Two Solutions of Different Concentrations of the Same Chemical

- Treat the two solutions as two separate "single" dilutions, then add to get the final concentration.

Ex. - If 300 mL of 0.250 M NaCl are added to 500.0 mL of 0.100 M NaCl , what is the resulting [NaCl]?

$$
\begin{array}{lll}
\text { Answer - } & C_{\text {dil }}=\frac{C_{\text {conc }} \times V_{\text {conc }}}{V_{\text {dil }}} & C_{\text {dil }}=\frac{(0.250)(0.300)}{(0.300+0.500)} \\
& C_{\text {dil }}=0.09375 \mathrm{M} \\
& C_{\text {dil }}=\frac{C_{\text {conc }} \times V_{\text {conc }}}{V_{\text {dil }}}=\frac{(0.100)(0.500)}{(0.300+0.500)} & C_{\text {dil }}=0.0625 \mathrm{M} \\
& {[\mathrm{NaCl}]_{\text {total }}=0.09375+0.0625} & {[\mathrm{NaCl}]=0.156 \mathrm{M}}
\end{array}
$$

Making a Dilute Solution

Ex. 1 - What volume of 6.00 M HCl is used in making up 2.00 L of 0.125 M HCl ?

$$
\text { Answer - } \quad C_{\text {conc }} \times V_{\text {conc }}=C_{\text {dil }} \times V_{\text {dil }} \quad 6.00 \times V_{\text {conc }}=0.125 \times 2.00 \quad V_{\text {conc }}=4.17 \times 10^{-2} L
$$

Ex. 2-A student mixes 100.0 mL of water with 25.0 mL of a sodium chloride solution having an unknown concentration. The student finds the molarity of the diluted solution is 0.0876 M . What is the molarity of the original sodium chloride solution?

$$
\text { Answer - } \quad C_{\text {conc }} \times V_{\text {conc }}=C_{\text {dil }} \times V_{\text {dil }} \quad C_{\text {conc }} \times 0.025=0.0876 \times 0.125 \quad \underline{C}_{\text {conc }}=0.438 \mathrm{M}
$$

Practice - Worksheet - Dilution Calculations
Dilutions Calculations - Answers

