## Simple Machines

Simple machines are tools employed in most machines we see around us. There are six of these devices.

(8) 2006 Encyclopredia Britannica, Inc.

- The two purposes of a simple machine are to:

1. Redirect force, so that it acts in a more useful direction.
2. Mechanical advantage: to amplify a force.

- Energy is not stored in a simple machine, so at each moment the energy in the system is constant.

$$
W_{\text {in }}=W_{\text {out }}
$$

- The work put into the machine is equal to the work that the machine does. $W=\vec{F} \times d$, therefore:

$$
\vec{F}_{\text {in }} \times d_{\text {in }}=\vec{F}_{\text {out }} \times d_{\text {out }}
$$

## Mechanical Advantage

Simple machines allow you to multiply a force.

- The ratio of the force out of the machine divided by the force into the machine is called its mechanical advantage.
- This formula explains how a simple machine can magnify force, and the relationship between mechanical advantage and the distances traveled on the input and output sides of the machine.

$$
M A=\frac{\vec{F}_{\text {out }}}{\vec{F}_{\text {in }}}=\frac{d_{\text {in }}}{d_{\text {out }}}
$$

where MA is mechanical advantage,
$\vec{F}$ is force and $d$ is distance.

- Ex. 1

An ideal simple machine has a mechanical advantage of 4.0. If the input force is +8.0 N , what is the output force?

- Ex. 2

An ideal simple machine has a mechanical advantage of 4.0. If the distance traveled on the input side is 1.0 m , what is the distance traveled on the output side?

- Ex. 3

An ideal simple machine has a mechanical advantage of 4.0 . If 24 J of energy is put into the machine, what would be its energy output?

The Lever

- In general, the force provided by a lever will be $\times$ times the force supplied to the lever where $\times$ is the ratio of the lengths on either side of the fulcrum. The input force is call the "effort" force and the output is called the "load" force.

- Ex. 1

A 16 N effort force is applied to this lever, what output force is generated?


- Ex. 2

A lever is 1.0 m long, with 0.60 m on the effort side of the fulcrum. About how much effort force would need to be exerted to lift a 120 N weight using this lever?

- Ex. 3

A lever is 6.0 m long and has a mechanical advantage of 2 . How long is the load side of the lever?

- Ex. 4

A lever has a mechanical advantage of 5.0. The work done to the effort side of the lever is 45 J . How much work is done on the load side of the lever?

## Inclined Plane

- Let's say you have a 750 N box you need to lift from the ground onto a loading dock which is 1.0 m above the ground. How much force would be required to lift the 750 N box straight up and onto the dock? And how much work is done lifting the box up onto the loading dock?
ground
- Let's say you could only supply a force of +250 N , how could you move this 750 N box onto the loading dock by yourself?

ground
- What is the distance the box will travel to get onto the loading dock using the inclined plane? And how much work is done by the 250 N force in sliding the box up and onto the loading dock using this frictionless inclined plane?


$$
M A_{\text {ramp }}=\frac{\text { length }}{\text { height }}
$$

- Ex. 1

An ideal inclined plane is 2.4 m long and goes from the ground to a loading dock which is 0.50 m above the ground. How much force would be needed to push a $20 . N$ mass up the ramp?

- Ex. 2

The maximum force supplied by an electric wheelchair is $200 . N$. What minimum ramp length would enable it to carry a combined mass of $1000 . \mathrm{N}$ (passenger plus chair) up a height of 0.20 m ?

- Ex. 3

The maximum force supplied by an electric wheelchair is $+200 . N$. What mechanical advantage would enable it to carry a combined mass of $1000 . \mathrm{N}$ (passenger plus chair) up a height of 0.20 m ?

## The Wedge

- The wedge is a moveable inclined plane. In some cases a wedge acts like a single inclined plane and in others it acts like two back to back inclined planes.

- Let's call $\vec{F}_{i n}$ the force that drives the wedge into the $\log$ and $\vec{F}_{\text {out }}$ the sideways force that splits the log.
- Ex. 1

A wedge is 8.0 cm long and 1.0 cm wide. What is its mechanical advantage?

- Ex. 2

A force of $1000 . \mathrm{N}$ is exerted on a wedge which is 8.0 cm long and 1.0 cm wide. What is the resulting splitting force on the log?

- Ex. 3

A door stop is $10 . \mathrm{cm}$ long and 2.0 cm high. What is its mechanical advantage?

- Ex. 4

A door stop is $10 . \mathrm{cm}$ long and 2.0 cm high. What upward force does it exert on a door, if the door is pushed against it with a force of 200. N ?

The Screw

- The screw is an inclined plane wrapped around a cylinder. Every full turn of the screw results in the outside edge of its threads moving a distance $l$ given by $2 \pi r$.

- Ex. 1

The threads of a screw are 0.25 mm apart and have a circumference of 1.25 mm . If the turning force of the screw is $+20 . N$, what is the force driving the screw into the wood?

## Wheel and Axle

- You should see that the man's hand travels a distance of $2 \pi r_{w}$ while the rope is pulled up a distance $2 \pi r_{A}$.

$$
\begin{aligned}
& F_{\text {out }}=F_{\text {in }} \frac{d_{\text {in }}}{d_{\text {out }}} \\
& F_{\text {out }}=F_{\text {in }} \frac{2 \pi r_{w}}{2 \pi r_{A}} \\
& F_{\text {out }}=F_{\text {in }} \frac{r_{w}}{r_{A}} \\
& M A=\frac{r_{w}}{r_{A}}=\frac{r_{\text {in }}}{r_{\text {out }}}
\end{aligned}
$$



- Ex. 1

A screwdriver with a mechanical advantage of 12 is used to drive a screw into a piece of wood. The MA for the screw is 9.0. What is the total MA?

- Ex. 2

A screwdriver with a mechanical advantage of 12 is used to drive a screw into a piece of wood. The MA for the screw is 9.0. If $+20 . \mathrm{N}$ of force is turning the screwdriver, what is the force pushing the screw into the wood.

The Pulley

- A simple pulley has no mechanical advantage. The distance traveled on the input and output side is the same, so the $M A=1.0$.

- However, two pulleys arranged like this do have a mechanical advantage. If the distance the bucket moves up is half the distance that the rope is pulled down, what is the mechanical advantage of the system?

- The MA of a pulley system can be found by counting the number of supporting strands on moveable pulleys. In example $A$ the effort strand (rope with the arrow) is not supporting any mass therefore system $A$ has a MA of 1.0.
- In example B, the effort strand is supporting half of the weight therefore system B has a MA of 2.0.

- Ex. 1

What is the mechanical advantage of the following systems?


- Ex. 5

If you need to lift a mass that weighs 1000. $N$, but can only supply a force of $220 . N$, how many pulleys will you need?

## Efficiency

- Ex. 1
50.J of energy is put into a simple machine which does $40 . J$ of work. What is its efficiency?
- Ex. 2

A force of $+20 . \mathrm{N}$ is used to push a $100 . \mathrm{N}$ mass up a 2.0 m long ramp. The mass is raised 0.20 m in the process. What is the efficiency of the ramp?

- Ex. 3

A force of $+250 . N$ is used to pull a $20 . m$ length of rope through a pulley system. In so doing a $1500 . N$ mass is raised 2.0 m . What is the efficiency of the pulley system?

Mechanical Advantage Summary Table

| Lever | Inclined Plane |
| :---: | :---: |
| $M A=\frac{\text { length to effort }(L E)}{\text { length to load }(L R)}$ | $M A=\frac{\text { length of plane }(L)}{\text { height of plane }(H)}$ |
| Wheel and Axle | Pulley |
| $M A=\frac{\text { radius of effort }(L E)}{\text { radius of load }(L R)}$ | $M A=\text { number of ropes that support }$ a moveable pulley |
| Wedge | Screw |
| $M A=\frac{\text { length of slope }(L)}{\text { thickness of wedge }(H)}$ | $M A=\frac{\text { circumference }(C)}{\text { pitch }(p)}$ |

