Simple Machines

Simple machines are tools employed in most machines we see around us. There are six of these devices.

© 2006 Encyclopædia Britannica, Inc.

- The two purposes of a simple machine are to:
 - 1. Redirect force, so that it acts in a more useful direction.
 - 2. Mechanical advantage: to amplify a force.
- Energy is <u>not stored</u> in a simple machine, so at each moment the energy in the system is constant. $W_{in} = W_{out}$
- The work put into the machine is equal to the work that the machine does. $W = \vec{F} \times d$, therefore:

$$\vec{F}_{in} \times d_{in} = \vec{F}_{out} \times d_{out}$$

Mechanical Advantage

Simple machines allow you to multiply a force.

- The ratio of the force out of the machine divided by the force into the machine is called its <u>mechanical</u> <u>advantage</u>.
- This formula explains how a simple machine can magnify force, and the relationship between mechanical advantage and the distances traveled on the input and output sides of the machine.

$$MA = \frac{\vec{F}_{out}}{\vec{F}_{in}} = \frac{d_{in}}{d_{out}}$$
 where MA is mechanical advantage,
 \vec{F} is force and d is distance.

- <u>Ex.</u>1

An ideal simple machine has a mechanical advantage of 4.0. If the input force is +8.0 N, what is the output force?

An ideal simple machine has a mechanical advantage of 4.0. If the distance traveled on the input side is 1.0 m, what is the distance traveled on the output side?

- <u>Ex.</u> 3

An ideal simple machine has a mechanical advantage of 4.0. If 24J of energy is put into the machine, what would be its energy output?

<u>The Lever</u>

- In general, the force provided by a lever will be × *times* the force supplied to the lever where × is the ratio of the lengths on either side of the fulcrum. The input force is call the "effort" force and the output is called the "load" force.

- <u>Ex.</u>1

A 16 N effort force is applied to this lever, what output force is generated?

- <u>Ex.</u> 2

A lever is $1.0 m \log$, with 0.60 m on the effort side of the fulcrum. About how much effort force would need to be exerted to lift a 120 N weight using this lever?

A lever is 6.0 m long and has a mechanical advantage of 2. How long is the load side of the lever?

- <u>Ex.</u> 4

A lever has a mechanical advantage of 5.0. The work done to the effort side of the lever is 45 J. How much work is done on the load side of the lever?

Inclined Plane

- Let's say you have a 750 N box you need to lift from the ground onto a loading dock which is 1.0 m above the ground. How much force would be required to lift the 750 N box straight up and onto the dock? And how much work is done lifting the box up onto the loading dock?

- Let's say you could only supply a force of +250 N, how could you move this 750 N box onto the loading dock by yourself?

- What is the distance the box will travel to get onto the loading dock using the inclined plane? And how much work is done by the 250 N force in sliding the box up and onto the loading dock using this frictionless inclined plane?

$$MA_{ramp} = \frac{length}{height}$$

An ideal inclined plane is 2.4 m long and goes from the ground to a loading dock which is 0.50 m above the ground. How much force would be needed to push a 20.N mass up the ramp?

- <u>Ex.</u> 2

The maximum force supplied by an electric wheelchair is 200.N. What minimum ramp length would enable it to carry a combined mass of 1000.N (passenger plus chair) up a height of 0.20 m?

- <u>Ex.</u> 3

The maximum force supplied by an electric wheelchair is +200.N. What mechanical advantage would enable it to carry a combined mass of 1000.N (passenger plus chair) up a height of 0.20 m?

<u>The Wedge</u>

- The wedge is a moveable inclined plane. In some cases a wedge acts like a single inclined plane and in others it acts like two back to back inclined planes.

- Let's call \vec{F}_{in} the force that drives the wedge into the log and \vec{F}_{out} the sideways force that splits the log.
- <u>Ex.</u> 1

A wedge is 8.0 cm long and 1.0 cm wide. What is its mechanical advantage?

- <u>Ex.</u> 2

A force of 1000.N is exerted on a wedge which is 8.0 cm long and 1.0 cm wide. What is the resulting splitting force on the log?

- <u>Ex.</u> 3

A door stop is 10. cm long and 2.0 cm high. What is its mechanical advantage?

- <u>Ex.</u> 4

A door stop is 10. cm long and 2.0 cm high. What upward force does it exert on a door, if the door is pushed against it with a force of 200.N?

<u>The Screw</u>

- The screw is an inclined plane wrapped around a cylinder. Every full turn of the screw results in the outside edge of its threads moving a distance l given by $2\pi r$.

$$MA = \frac{\vec{F}_{out}}{\vec{F}_{in}} = \frac{2\pi r}{l}$$

- <u>Ex.</u> 1

The threads of a screw are 0.25 mm apart and have a circumference of 1.25 mm. If the turning force of the screw is +20.N, what is the force driving the screw into the wood?

Wheel and Axle

- You should see that the man's hand travels a distance of $2\pi r_w$ while the rope is pulled up a distance $2\pi r_A$.

- <u>Ex.</u> 1

A screwdriver with a mechanical advantage of 12 is used to drive a screw into a piece of wood. The MA for the screw is 9.0. What is the total MA?

- <u>Ex.</u> 2

A screwdriver with a mechanical advantage of 12 is used to drive a screw into a piece of wood. The MA for the screw is 9.0. If +20.N of force is turning the screwdriver, what is the force pushing the screw into the wood.

<u>The Pulley</u>

- A simple pulley has no mechanical advantage. The distance traveled on the input and output side is the same, so the MA = 1.0.

However, two pulleys arranged like this do have a mechanical advantage.
If the distance the bucket moves up is half the distance that the rope is pulled down, what is the mechanical advantage of the system?

6

- The MA of a pulley system can be found by counting the number of supporting strands on moveable pulleys. In example A the effort strand (rope with the arrow) is not supporting any mass therefore system A has a *MA of* 1.0.
- In example B, the effort strand is supporting half of the weight therefore system B has a MA of 2.0.

What is the mechanical advantage of the following systems?

- <u>Ex.</u> 5

If you need to lift a mass that weighs 1000.N, but can only supply a force of 220.N, how many pulleys will you need?

<u>Efficiency</u>

- <u>Ex.</u> 1

50. J of energy is put into a simple machine which does 40. J of work. What is its efficiency?

A force of +20.N is used to push a 100.N mass up a 2.0 m long ramp. The mass is raised 0.20 m in the process. What is the efficiency of the ramp?

- <u>Ex.</u> 3

A force of +250.N is used to pull a 20.m length of rope through a pulley system. In so doing a 1500.N mass is raised 2.0 m. What is the efficiency of the pulley system?

Lever	Inclined Plane
$MA = \frac{length to effort (LE)}{length to load (LR)}$	$MA = \frac{length of plane (L)}{height of plane (H)}$
Wheel and Axle	Pulley
$MA = \frac{radius \ of \ effort \ (LE)}{radius \ of \ load \ (LR)}$	MA = number of ropes that support a moveable pulley
Wedge	Screw
$MA = \frac{length of slope (L)}{thickness of wedge (H)}$	$MA = \frac{circumference(C)}{pitch(p)}$

Mechanical Advantage Summary Table