Unit Conversions - Solutions

1.) Convert a speed of $88 \frac{\mathrm{~m}}{\mathrm{~s}}$ to its equivalent measurement in $\frac{\mathrm{cm}}{\mathrm{s}}$.

Answer $-\frac{88 \mathrm{~m}}{1 \mathrm{~s}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=\frac{8800 \mathrm{~cm}}{\mathrm{~s}} \quad \frac{8800 \mathrm{~cm}}{\mathrm{~s}}$
2.) Convert a density of $\frac{9.45 g}{L}$ to its equivalence in $\frac{g}{m L}$.

Answer $-\frac{9.45 \mathrm{~g}}{1 L} \times \frac{1 L}{1000 \mathrm{~mL}}=\frac{0.00945 \mathrm{~g}}{m L} \quad \frac{0.00945 \mathrm{~g}}{m L}$
3.) The density of mercury metal is $\frac{13.6 \mathrm{~g}}{\mathrm{~mL}}$. What is the mass of 3.55 mL of the metal?

$$
\text { Answer }-3.55 \mathrm{~mL} \times \frac{13.6 \mathrm{~g}}{1 \mathrm{~mL}}=48.28 \mathrm{~g} \quad 48.3 \mathrm{~g}
$$

4.) The density of salt is $\frac{2.16 \mathrm{~g}}{\mathrm{~mL}}$. What is the mass of 100 mL of this solid?

Answer $-100 \mathrm{~mL} \times \frac{2.16 \mathrm{~g}}{1 \mathrm{~mL}}=216 \mathrm{~g} \quad 200 \mathrm{~g}$
5.) A particle moves through a gas at a speed of $\frac{15 \mathrm{~km}}{\mathrm{~s}}$. How far will it move in 5.5 s ?

Answer $-5.5 \mathrm{~s} \times \frac{15 \mathrm{~km}}{1 \mathrm{~s}}=82.5 \mathrm{~km} \quad 83 \mathrm{~km}$
6.) A solution of barium nitrate contains $\frac{61.2 g}{L}$ of solution. How many grams of barium nitrate is contained in 2.75 L of this solution?

Answer - $2.75 L \times \frac{61.2 \mathrm{~g}}{1 \mathrm{~L}}=168.3 \mathrm{~g} \quad 168 \mathrm{~g}$
7.) A sample of seawater contains 0.00245 g of sodium chloride per mL of solution. How much sodium chloride is contained in 50.0 mL of this solution?
Answer - $50.0 \mathrm{~mL} \times \frac{0.00245 \mathrm{~g}}{1 \mathrm{~mL}}=0.1225 \mathrm{~g} \quad 0.123 \mathrm{~g}$
8.) Convert $\frac{73.4 \mathrm{~km}}{h}$ to ite equivalent value in $\frac{m}{s}$.

Answer - $\frac{73.4 \mathrm{~km}}{1 \mathrm{~h}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1 \mathrm{~h}}{60 \mathrm{~min}} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=\frac{20.3888888 \mathrm{~km}}{\mathrm{~h}} \quad \frac{20.4 \mathrm{~m}}{\mathrm{~s}}$
9.) The density of iron is $\frac{7.86 \mathrm{~g}}{\mathrm{~mL}}$. What volume will be occupied by 45.0 g ?

$$
\text { Answer }-45.0 \mathrm{~g} \times \frac{1 \mathrm{~mL}}{7.86 \mathrm{~g}}=5.73 \mathrm{~mL} \quad 5.73 \mathrm{~mL}
$$

10.) The density of helium gas is $\frac{0.178 \mathrm{~g}}{L}$. What would be the mass of 150 L of the gas?

$$
\text { Answer }-150 L \times \frac{0.178 \mathrm{~g}}{1 \mathrm{~L}}=26.7 \mathrm{~g} \quad 27 \mathrm{~g}
$$

11.) A particle moving through a gas at a speed of $\frac{45.8 \mathrm{~m}}{s}$ will take how long to travel 25 cm ?

Answer - $25 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \times \frac{1 \mathrm{~s}}{45.8 \mathrm{~m}}=0.00545851 \mathrm{~s} \quad 0.0055 \mathrm{~s}$
12.) A sample of seawater contains 6.277 g of sodium chloride per litre of solution. How many mg of sodium chloride would be contained in 25.0 mL of this solution?

Answer - $25.0 \mathrm{~mL} \times \frac{1}{1000 \mathrm{~mL}} \times \frac{6.277 \mathrm{~g}}{1 \mathrm{~L}} \times \frac{1000 \mathrm{mg}}{1 \mathrm{~g}}=156.925 \mathrm{mg} \quad 157 \mathrm{mg}$
13.) Convert 32.5 ounces to centigrams cg .

Answer - $32.5 \mathrm{oz} \times \frac{1 \mathrm{lb}}{16 \mathrm{oz}} \times \frac{454 \mathrm{~g}}{1 \mathrm{lb}} \times \frac{100 \mathrm{cg}}{1 \mathrm{~g}}=92218.75 \mathrm{cg} \quad 92200 \mathrm{cg}$
14.) Convert 3.55 yards to cm .

Answer - $355 y d \times \frac{36 \text { in }}{1 y d} \times \frac{2.54 \mathrm{~cm}}{1 \text { in }}=324.612 \mathrm{~cm} \quad 325 \mathrm{~cm}$
15.) Convert 35.8 miles per hour (mph) to $\frac{\mathrm{m}}{\mathrm{s}}$.

Answer - $\frac{35.8 \text { mile }}{1 \mathrm{~h}} \times \frac{1 \mathrm{~km}}{0.621 \text { mile }} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1 \mathrm{~h}}{60 \mathrm{~min}} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=\frac{16.0135989 \mathrm{~m}}{\mathrm{~s}} \quad \frac{16.0 \mathrm{~m}}{\mathrm{~s}}$
16.) Convert $\frac{13.6 g}{m L}$ to pounds per cubic foot $\left(\frac{l b}{f t^{3}}\right)$.

Answer $-\frac{13.6 \mathrm{~g}}{1 \mathrm{~mL}} \times \frac{1 \mathrm{lb}}{454 \mathrm{~g}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{28.32 \mathrm{~L}}{1 f t^{3}}=\frac{848.3524 \mathrm{lb}}{f t^{3}} \quad \frac{848 \mathrm{lb}}{f t^{3}}$
17.) A sample of seawater contains 0.075 g of sodium chloride per mL of solution. How many moles of sodium chloride are there per litre of this solution? A mole of sodium chloride is equivalent to 58.5 g of sodium chloride.
Answer $-\frac{0.075 \mathrm{~g} \mathrm{NaCl}}{1 \mathrm{~mL}} \times \frac{1 \mathrm{~mol}}{58.5 \mathrm{~g}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=\frac{1.28205 \mathrm{~mol}}{\mathrm{~L}} \quad \frac{1.3 \mathrm{~mol}}{\mathrm{~L}}$

