Graphing Introduction Lab

Purpose - to practice graphing skills such as plotting, curve recognition and calculation of formula describing the graph.

Procedure -

1.) The data below was collected by a student who observed a car traveling at a constant velocity (speed). Plot the data on a graph of distance vs. time (d on y-axis). Make your graph a $\frac{1}{2}$ page in size with an appropriate scale.

Distance (m)	Time (s)	Distance (m)	Time (s)
0	0	1.20	1.60
0.60	0.80	1.50	2.00
0.90	1.20	1.65	2.20
1.00	1.33	1.80	2.40

2.) Calculate the slope of the line in your graph, include units.
3.) Determine and record an equation for your graph.
4.) The following data was collected at a horse race. The race was in progress when data collection began. Plot the data on a graph of distance vs. time, use a $\frac{1}{2}$ page again.

Distance from start gate (m)	Time (s)	Distance (m)	Time (s)
5	0	22.2	6.0
7.8	1.5	27.0	7.5
14.6	3.0	31.8	9.0
17.4	4.5	33.6	10.5

5.) Calculate the slope of the line in your graph, include units.
6.) Determine an equation for your graph.
7.) The following data was collected as a rock was dropped off a cliff. Prepare a distance vs. time graph as in the previous procedures.

Distance (m)	Time (s)	Distance (m)	Time (s)
0	0	5.00	1.00
0.31	0.25	7.81	1.25
1.25	0.50	11.3	1.50
2.81	0.75	15.3	1.75

8.) Determine an equation for your graph.

Discussion -

1.) Which of the 3 shapes of graphs is your first graph?
2.) Which of the 3 shapes of graphs is your $2^{\text {nd }}$ graph?
3.) Which of the 3 shapes of graphs is your $3^{\text {rd }}$ graph?
4.) Which type of graph will have no y - intercept?

Conclusion - Do a meaningful conclusion to this lab.

