Graphical Analysis of $\vec{d} v s . t$ and $\vec{v} v$ s.t Graphs

Purpose - to learn to recognize the various shapes of plots of moving objects and to understand the physical meanings of slope and area on $\vec{d} v s . t$ and $\vec{v} v$ s.t graphs.

Procedure -

1.) From the windows desktop double click on the desktop tools icon, physics apps, IP player. Click file, open, and double click on sim_03.ip.
2.) Maximize your screen to see the entire experiment by clicking on the \square icon in the upper right hand corner.
3.) Set the acceleration of the car to zero. Leave velocity at $+2.00 \frac{\mathrm{~m}}{\mathrm{~s}}$. Run the experiment. Sketch and title both graphs, and record the information in the table between the graphs. This table shows the final values of displacement, velocity, and time.
4.) Reset the experiment. Change the initial velocity to $+5.00 \frac{\mathrm{~m}}{\mathrm{~s}}$ and run again. Sketch the graphs and record the table values. Do a slope calculation for the $d v s$. t graph, include a unit calculation. Calculate the area under the velocity time graph, do a unit calculation.
5.) Reset the experiment. Set the acceleration to $+1.00 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. Run, sketch the graphs and record the table values. Calculate the slope of the velocity time graph, include a unit calculation.
6.) Reset the experiment. Change the acceleration to $-1.00 \frac{\mathrm{~m}}{s^{2}}$. Run and sketch the graphs and record the table values.
7.) Close the application by pressing Alt-F4.

Discussion -

1.) How does the slope of the \vec{d} vs.t graph change between procedures 3 and 4 ?
2.) You should notice something about the slope found in procedure 4 and the velocity. Make a statement comparing the slope and velocity.
3.) You should notice something about the area found in procedure 4 and the displacement. Make a statement comparing the area and displacement of the object.
4.) What is the meaning of the slope of $a \vec{v} v s . t$ graph?
5.) Describe the graph of $\vec{d} v s . t$ in procedure 5 .
6.) In procedure 6 the graph of \vec{d} vs.t has a maximum value, when the car is at this distance what is happening? What happens before the car reaches this point, what happens after?
7.) When is a negative acceleration different from deceleration?

Conclusion - Answers the purpose! That is describe what the slope of $\vec{d} v s . t$ and $\vec{v} v s . t$ graphs are and what the area under $a \vec{v}$ vs.t graph tells one.

