Types of Chemical Reactions

1.) Synthesis - $A + B \rightarrow AB$

*** What to look for \rightarrow starts with 2 elements that combine.

$$\underline{Ex. 1}$$
 - $C_{(s)}$ + $O_{2(q)}$ \rightarrow

$$Ex. 2 - H_{2(g)} + Cl_{2(g)} \rightarrow$$

$$Ex. 3$$
 - Sb $_{(s)}$ + Br_{2 (I)} \rightarrow

2.) Decomposition - AB → A + B

*** What to look for \rightarrow starts with one compound.

$$\underline{\mathsf{Ex.1}}$$
 - $\mathsf{Ag}_2\mathsf{O}_{(\mathsf{s})}$ \rightarrow

$$\underline{\mathsf{Ex.}\ 2}$$
 - HgO $_{(\mathsf{s})}$ \rightarrow

$$\underline{\mathsf{Ex. 3}}$$
 - NO $_{(s)}$ \rightarrow

3.) Single Replacement -
$$A + BX \rightarrow B + AX$$
 or $Y + BX \rightarrow X + BY$

(metals replace metals and non-metals replace non-metals)

*** What to look for \rightarrow starts with one element and one compound.

$$\underline{\mathsf{Ex.}\, 1}$$
 - $\mathsf{CuCl}_{2\,(aq)}$ + $\mathsf{Fe}_{\,(s)}$ \rightarrow

$$Ex. 2 - Cl_{2 (aq)} + KI_{(aq)} \rightarrow$$

$$Ex. 3 - AqNO_{3 (aq)} + Cu_{(s)} \rightarrow$$

What do you get from this reaction? BE CAREFUL. SOMETHING IS UP!!!!!

$$Ag_{(s)} + Cu(NO_3)_{2(aq)} \rightarrow$$

- You need to use the activity series on your periodic table to see if reactions will happen or not!
- The element doing the replacing needs to be higher on the activity series than the element it replaces or the reaction will not occur.

$$Cu_{(s)} + FeCl_{2(aq)} \rightarrow$$

$$Cl_{2 (aq)} + KI_{(aq)} \rightarrow$$

$$CuI_{2 (aq)} + Br_{2 (q)} \rightarrow$$

4.) Double Replacement - AX + BY → AY + BX

*** What to look for \rightarrow starts with two compounds.

$$Ex. 1 - AgNO_{3 (aq)} + NaCl_{(aq)} \rightarrow$$

$$\underline{Ex. 2}$$
 - NaCl $_{(aq)}$ + H_2SO_4 $_{(aq)}$ \rightarrow

$$Ex. 3$$
 - Ba(NO₃)_{2 (aq)} + Na₂SO_{4 (aq)} \rightarrow

- Like a single replacement reaction, how do we know if the reaction will occur? For double replacement reactions to occur a <u>solid</u>, <u>gas or water MUST be made!!!!!</u>
- How do you know what states to put for each chemical?
 - know some gases H N O F Cl Br I
 - know some liquids H₂O
 - use solubility table on back of periodic table.
 - find negative ion
 - find metal
 - it is soluble if they meet at an "aq" symbol
 - it has a low solubility if they meet at an "s"

Neutralization is a special type of double replacement.

*** What to look for \rightarrow starts with an acid and a base.

Acids start with H and bases end with OH

$$Ex. 1$$
 - $HCl_{(aq)}$ + $NaOH_{(aq)}$ \rightarrow

$$\underline{\text{Ex. 2}}$$
 - $H_2\text{SO}_4$ (aq) + KOH (aq) \rightarrow

$$Ex. 3$$
 - H_3PO_4 (aq) + $Ba(OH)_2$ (aq) \rightarrow

5.) <u>Combustion</u> - is a rapid reaction with oxygen - $C_xH_y + O_2 \rightarrow CO_2 + H_2O$

*** What to look for \rightarrow starts with hydrocarbon and oxygen.

$$\underline{\mathsf{Ex.1}}$$
 - $C_5\mathsf{H}_{12\;(\mathsf{I})}$ + $O_{2\;(\mathsf{g})}$ \rightarrow

$$\underline{\mathsf{Ex.\,2}}$$
 - $C_5\mathsf{H}_{12}\mathsf{O}_{2\ (\mathsf{s})}$ + $O_{2\ (\mathsf{g})}$ \rightarrow

*** Note - if the hydrocarbon contains sulphur, SO_2 is also produced.

$$\underline{\mathsf{Ex.\,3}} \ - \ \ \ C_5 \mathsf{H}_{12} \mathsf{S} \ {}_{(\mathsf{s})} \ + \ 9 \ \mathsf{O}_{2 \ (\mathsf{g})} \ \ \rightarrow \ \ \ 5 \ \mathsf{CO}_{2 \ (\mathsf{g})} \ + \ 6 \ \mathsf{H}_{2} \mathsf{O} \ \ {}_{(\mathsf{g})} \ + \ \mathsf{SO}_{2 \ (\mathsf{g})}$$

6.) Miscellaneous - a reaction that doesn't fit any of the above types.

$$\underline{\mathsf{Ex.1}}$$
 - $\mathsf{CaSO_4} \cdot \mathsf{2H_2O}_{(\mathsf{s})} + \mathsf{2SO_3}_{(\mathsf{q})} \rightarrow \mathsf{CaSO_4}_{(\mathsf{s})} + \mathsf{2H_2SO_4}_{(\mathsf{aq})}$

$$\underline{\mathsf{Ex.\,2}} \ - \ \mathsf{Ca_3(PO_4)_2}_{\,\,(\mathsf{aq})} \ + \ 3 \ \mathsf{SiO_2}_{\,\,(\mathsf{s})} \ + \ 5 \ \mathsf{C}_{\,\,(\mathsf{aq})} \ \rightarrow \ 3 \ \mathsf{CaSiO_3}_{\,\,(\mathsf{s})} \ + \ 5 \ \mathsf{CO}_{\,\,(\mathsf{l})} \ + \ 2 \ \mathsf{P}_{\,\,(\mathsf{s})}$$