Solutions

- Solution chemistry is very interesting to chemists as it allows us to control the rates of reactions better than if the states are solid or gaseous.
- This chapter is rife with vocabulary that is very important so we will start with a vocabulary list.

Solution Vocabulary

1.) Substance - A term to describe a pure chemical compound.

Ex. - \qquad
2.) Mixture - A combination of different kinds of matter that retain their own properties.

Ex. - \qquad
3.) Homogeneous mixture - Mixtures in which the components are uniformly distributed.
Ex. -
\qquad
4.) Heterogeneous mixture - Mixtures in which the components are segregated when at rest.
Ex.
\qquad
5.) Solution - A combination of two or more substances that exist as a homogeneous mixture.
6.) Solvent - The liquid portion of a solution which is present in greater quantity.

Ex. - \qquad
7.) Solute - The substance which is dissolved in the solvent. It is usually present in lesser amount. Ex. - \qquad
8.) Soluble - Possessing the ability to dissolve.
9.) Insoluble - NOT possessing the ability to dissolve.
10.) Miscible - Unlimited ability to mix in solution.
11.) Immiscible - Describes substances which are insoluble in each other.
12.) Solubility - A measure of the amount of solute that is able to dissolve in a given volume of solvent at a specified temperature.

Ex. - Typical units are \qquad
13.) Saturated solution - A solution in which the maximum quantity of solute has been dissolved at a given temperature.
14.) Concentrated - A relatively large amount of solute dissolved in a given volume of solution. Ex. - \qquad
15.) Dilute - A relatively small amount of solute dissolved in a given volume of solution. Ex. - \qquad
16.) Precipitate (ppt)- An insoluble product (ex. A solid product which will cause cloudiness or may settle to the bottom of the container) which results from a chemical reaction between two solutions. Ex. - \qquad
17.) Filtrate - When a heterogeneous solution is poured onto filter paper, the solid precipitate which is captured on the filter paper is called the filtrate.
18.) Dissociation - the breaking apart of ionic compound into the subsequent ions that composed the compound.

- In solution chemistry we need to remember that (s) means solid, (I) means liquid, (g) means gas, (aq) means aqueous and that [] mean "the concentration of" whatever is inside of the brackets.
- In chemistry there are three types forms for writing chemical reactions. Up to this point you are familiar with the first only.
1.) Molecular reactions -

Ex. -
2.) Total ionic reactions (or overall reactions) -

Ex. -

3.) Net ionic reactions -

```
Ex.-
```

- Last section (stoichiometry) looked at calculations involving molarity of solutions. We are going to extend your knowledge to be able to calculate concentrations of ions in solutions.

Ex. - What is the molar concentration of the chloride ions in $0.25 \mathrm{M} \mathrm{AlCl}_{3(\mathrm{aq})}$?

Answer -

Ex. 2 - What is the concentration of each type of ion in a solution made by mixing 50.0 mL of 0.240 M AlBr_{3} and 25.0 mL of $0.300 \mathrm{M} \mathrm{CaBr}{ }_{2}$?

Answer -

Example Problems

1.) Enough water is added to 2.62 g of sodium dichromate, $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ to make 1.00 L of solution.
a.) How many moles of $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ are in this solution?
b.) What is the concentration of this solution?
c.) Write a reaction representing the dissociation of $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
2.) $100 . m L$ of the solution in \#1 above is poured into a beaker.
a.) What is the concentration of this $100 . \mathrm{mL}$ sample?
b.) How many moles of $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ are in this $100 . \mathrm{mL}$ sample?
3.) 400.0 mL of water is then added to the 100 mL sample from \#2 above.
a.) How many moles of $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ are in this sample?
b.) What is the concentration of this sample?
c.) How many moles of Na^{+}are in this sample?

