## Notes - Projectiles

- Projectiles are objects falling through the air due to gravity. However what makes projectiles different from falling bodies is they also have horizontal movement not just vertical.
- The path that a projectile follows is called a trajectory.
- Suppose a person drops their gum out the window of their car as they drive by you. What would the trajectory of the gum look like to you?

- What would the trajectory of the gum look like to the person who dropped it? Start of drop

- The gum trajectory never changed but the VIEWPOINT did!
- Because the vertical movement is independent of the horizontal movement we can figure out each for projectiles.
- Horizontal components have $x$ as part of the letter and vertical components have $y$.
- Ex. 1- $\quad \vec{v}_{\text {avg }}=\frac{\vec{d}_{f}-\vec{d}_{i}}{\Delta t} \quad$ becomes $\quad \vec{v}_{x}=\frac{\vec{d}_{x f}-\vec{d}_{x i}}{\Delta t}$
- To solve for vertical components of a projectile we can use either

$$
\vec{a}_{y}=\vec{v}_{y} t+\frac{1}{2} \vec{a} t^{2} \quad \text { or } \quad \vec{v}_{y f}=\vec{v}_{y o}+\vec{a} t
$$

Where $\vec{d}_{y}$ represents the displacement in the vertical direction, $\vec{v}_{y}$ is the vertical velocity at the start and $\vec{v}_{y f}$ is the vertical final velocity.

## TYPE 1 PROJECTILES

## Objects launched Horizontally

- These objects have no initial vertical velocity. That is they are launched horizontal only.
- Ex. - A rock is thrown $+15 \mathrm{~m} / \mathrm{s}$ horizontally at your sister as she keeps bugging you to play "tea" with her. She ducks and the rock goes off a 44 m high cliff. How long does it take to reach the bottom of the cliff?

Answer -

Given
Need

- How far from the base of the cliff does the rock hit?
Answer -
Given
Need
- Draw a sketch of the rocks trajectory.



## TYPE 2-PROJECTILES

## Objects launched at an Angle

- Objects launched with both vertical and horizontal components are solved by doing the horizontal and vertical trajectories separately.
- The range $(R)$ is the horizontal distance the object moves from the start till the object returns to the start surface height.
- Ex. 1 - The flight of a bullet follows a parabola. If the initial velocity of the bullet is $250 \mathrm{~m} / \mathrm{s}$ at an angle of $66^{\circ}$ above the horizontal how long does it take to land?

Answer -
Given
Need

- Ex. 2-How high did the bullet fly?

Answer -

- Ex. 3 - What was the range of the bullet?

Answer -

