Notes - The Inverse Square Law

- In physics many formulas act as a function of $\frac{1}{x^{2}}$, where x is some variable in an equation. We have seen this in two equations so far,

$$
F_{g}=\frac{G m_{1} m_{2}}{d^{2}} \quad \text { and } \quad g=\frac{G m_{\text {object }}}{r_{\text {object }}^{2}}
$$

- When a problem involves just changing the distance between two masses the change in Fg or g is simple to calculate because it only depends on change in the distance. The common mistake however is to forget that it depends on the square of the distance.
- A typical example question - A 30 kg object at earth's surface has a force of gravity $\left(F_{g}\right)$ of 294 N $\left[F_{g}=\mathrm{mg}\right]$. What is the force of gravity on this object at 3 earth radii from the center of the planet?
- There are 2 ways to find an answer to this, and we will compare both.

$$
F_{g}=\frac{G m_{1} m_{2}}{d^{2}}
$$

Inverse Square Law
look up $G\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right)$
look up mass of earth $\left(5.98 \times 10^{24} \mathrm{~kg}\right)$
look up radius of earth $\left(6.38 \times 10^{6} \mathrm{~m}\right)$
multiply be 3 because you are three radii away

$$
F_{g}=\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24} \times 30}{\left(19.14 \times 10^{6}\right)^{2}}
$$

$$
F_{g}=32.7 \mathrm{~N}
$$

Which way requires less work?

- Another example - The gravitational field on the sun is known to be $272 \mathrm{~N} / \mathrm{kg}$. What is the gravitational field at double this distance?
$g=272 \times\left(\frac{1}{2}\right)^{2} \quad=>\frac{272}{4}=68 \mathrm{~N} / \mathrm{kg}$. Or you could look up data on the sun's mass and radius.

