## Unit 4 - Acids, Bases, and Salts

## Arrhenius Acids and Bases

- This theory of acids and bases was the first developed (over one hundred years ago), and is still relevant in many circumstances.
- Definitions:
1.) $A n$ $\qquad$ is a chemical species that releases $\mathrm{H}^{+}{ }_{(a q)}$ (proton) in water.

A simpler way to say this is an acid is an ionic compound that starts with "H".
Ex. - $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HNO}_{3}, \mathrm{HCl}$
2.) A base is a chemical species which releases $\mathrm{OH}^{-}$(aq) (hydroxide) in water.

## Ex. -

3.) A salt is an ionic compound that does not contain hydrogen $(\mathrm{H})$ or hydroxide $\left(\mathrm{OH}^{-}\right)$, or another way of saying this is it is an ionic compound that is not an acid or base! Ex. -

- The most common chemical reaction involving acids and bases is an $\qquad$ reaction.

$$
\begin{aligned}
& \text { Ex. - } \mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl} \\
& \text { Ex. 2- } \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{KOH} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \quad \text { (don't forget to balance) }
\end{aligned}
$$

- Properties of Arrhenius acids:
1.) acids react with bases.
2.)
3.) acids react with some metals (metals higher than hydrogen on reactivity) to form hydrogen gas.
(ex. - zinc, magnesium, potassium, iron, aluminium)
4.) acids turn litmus paper $\qquad$ .
5.) acids ARE sour.


## Common acids

1.) Sulphuric acid - $\mathrm{H}_{2} \mathrm{SO}_{4}$
common names: $\qquad$

- Good electrolyte (conducts electricity)
- Used in manufacture of sulphates, in car batteries, to absorb water from solutions, and
2.) Hydrochloric acid - HCl $\qquad$
- Good electrolyte
- Concentrated solutions have a choking odour
- Used to manufacture chlorides, to remove "lime scale" (calcium and magnesium carbonate), and cleaning metals of oxides.
3.) Nitric acid - $\qquad$
- Very reactive with metals
- Colours proteins (like skin!)
- Used to manufacture $\qquad$ and $\qquad$ .
- Properties of Arrhenius bases:
1.) bases react with acids
2.) bases form $\qquad$ in water
3.) bases feel slippery (if when spilled your hands are slippery lightly WASH THEM!)
4.) bases turn litmus paper $\qquad$ .
5.) bases taste $\qquad$ (baking soda).


## Common bases

1.) - NaOH common names: $\qquad$ or lye

- Very corrosive (caustic) to animal and plant tissue
- Quickly " " (removes water form air)
- Used in manufacture of sodium salts, in making soaps and cleaning products, and production of $\qquad$ , $\qquad$ and aluminium.
2.) Ammonia - $\qquad$
- Highly toxic and corrosive gas with pungent odour
- Soluble in water
- Used to manufacture nitric acid, fertilizers, explosives, and synthetic fibres.
- When acids are mixed with water the proton $\left(H^{+}\right)$released by the acid reacts with the water molecule. This creates what is known as a $\qquad$ $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$.
- Since all acid reactions take place in water the formerly mention proton $\left(\mathrm{H}^{+}\right)$is actually always $\mathrm{H}_{3} \mathrm{O}^{+}$.
- In the last chapter we understood the dissociation of HCl to be this:

We now know it should be written like this:

## Bronsted-Lowry Acids and Bases

- The Bronsted-Lowry theory of acids and bases was developed to include Arrhenius acid/base theory but was needed due to the development in chemistry understanding that incorporated equilibrium.
- Definitions:
4.) An acid is a chemical species that $\qquad$ a proton $\left(\mathrm{H}^{+}\right)$to another substance. A simpler way to say this is an acid is a proton donor $\left(\mathrm{H}^{+}\right)$.
5.) A base is a chemical species that $\qquad$ a proton $\left(\mathrm{H}^{+}\right)$from another substance.

A simpler way to say this is a base is a proton $\left(\mathrm{H}^{+}\right)$acceptor.
Ex. -
We can see the ammonium received and $\mathrm{H}^{+}$and the water lost an $\mathrm{H}^{+}$. So, overall we have

$$
\underset{\substack{\mathrm{NH}_{3}}}{\underset{4}{\mathrm{H}_{2} \mathrm{O}} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}}
$$

- Definitions for acids:
1.) Monoprotic acid -
2.) Diprotic acid -
3.) Triprotic acid -
4.) Polyprotic acid -
5.) Amphiprotic - a substance that can act like a proton donor (Bronsted-Lowry acid) or a proton acceptor (Bronsted-Lowry base). Ex. - $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HS}^{-}, \mathrm{HCO}_{3}^{--}$


A substance is AMPHIPROTIC if
1.)
2.)
6.) Conjugate acid-base pair - also known as a conjugate pair is two chemicals which differ by one proton. Ex. $-\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$ - conjugate pairs
7.) Conjugate acid - the member of the above-mentioned pair that contains the extra proton.

$$
\text { Ex. - } \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

8.) Conjugate base - the member of the above-mentioned pair that lacks the extra proton.

$$
\text { Ex. - } \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

- Not all acid base reactions go to equilibrium.

1. Reactions with strong acids and bases go to $\qquad$ .
2. Reactions with weak acids and bases go to $\qquad$

- Strong acids/bases fully ionize (fully dissociate) in solution.

$$
\text { Ex. }-\mathrm{NaOH}_{(s)} \rightarrow \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\text {(aq) }} \quad \text { or } \quad \mathrm{HCl}_{(s)} \rightarrow \mathrm{H}^{+}{ }_{(a q)}+\mathrm{Cl}^{-}(\mathrm{aq)}
$$

- Weak acids/bases don't fully ionize (fully dissociate) in solution.
***Note- dilute and concentrated refer to molarity of solution whereas strong and weak refer to percent of ionization. BE CAREFUL with language in chemistry!


## Handout - Relative Strengths of Acids and Bases

is an expression describing how all strong acids (six acids on top of chart) are $100 \%$ dissociated in aqueous solution and are thus equivalent to solutions of $\mathrm{H}_{3} \mathrm{O}^{+}$(aq), and strong bases (two on bottom right) are also $100 \%$ dissociated in aqueous solutions rendering them equivalent to solutions of $\mathrm{OH}^{-}$.

- Because of this condition of strong acids/bases, the central portion of the table from $\mathrm{H}_{3} \mathrm{O}^{+}$down to $\mathrm{H}_{2} \mathrm{O}$ shows the reactions which can actually occur. The top six and bottom two reactions are said to be levelled to produce $\mathrm{H}_{3} \mathrm{O}^{+}$for acids and $\mathrm{OH}^{-}$for bases.


## Equilibrium Constants for Water, Acids, and Bases

- Definitions:
6.) A neutral solution is a solution when

| $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ | $\left[\mathrm{OH}^{-}\right]$ |
| :--- | :--- |
| $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ | $\left[\mathrm{OH}^{-}\right]$ |
| $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ | $\left[\mathrm{OH}^{-}\right]$ |

## Strong Acids and Bases

- Remember not all acid base reactions go to equilibrium. Reactions with strong acids and bases go to completion.
- When a strong acid and a strong base react, they neutralize and make water.

$$
\text { Ex. - } \mathrm{H}^{+}{ }_{(\mathrm{qq})}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}+\mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}
$$

For a strong acid/base reaction we'd get this:

$$
\begin{aligned}
& \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\text {(qq })} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+59 \mathrm{~J} \quad \text { the reverse reaction would be } \\
& \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+59 \mathrm{~J} \rightleftharpoons \mathrm{H}^{+}{ }_{(\text {(q) })}+\mathrm{OH}^{-}{ }_{\text {(aq) }} \quad \text { this is known as the SELF-IONIZATION of water. }
\end{aligned}
$$

- An equilibrium expression can be written for this reaction: $K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$(water is a liquid).
- The more common way to write this expression is $K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
- This $K_{w}$ value has been measured at $1.00 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$.

Ex. - What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a $0.0010 \mathrm{M} \mathrm{HCl}($ (aq)?
Answer - *remember HCl is a strong acid, so it will completely dissociate* $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{HCl}]$

## Weak Acids and Bases

- Remember reactions with weak acids and bases go to $\qquad$ .
- The ionization of weak acids produces the conjugate base and acid of the reactant acid and water.

Ex. - $\quad \mathrm{CH}_{3} \mathrm{COOH}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CHOO}^{-}{ }_{(\text {aq })}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq) }}$
The equilibrium expression for this reaction is $\quad K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \quad K_{a}=1.76 \times 10^{-5}$
This value of $K_{a}$ is called the

- The ionization of weak bases produces the conjugate acid and base of the reactant base and water.

EX. - $\quad \mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\text {aq })}$
The equilibrium expression for this reaction is $\quad K_{b}=\frac{\left[\mathrm{NH}_{4}+\left[\mathrm{OH}^{-}\right]\right.}{\left[\mathrm{NH}_{3}\right]} \quad K_{b}=1.79 \times 10^{-5}$
This value of $\mathrm{K}_{b}$ is called the Base Ionization Constant

- The chart of Relative Strengths of Acids and Bases does not list $K_{b}$ values. However, there is a relationship between $K_{a}$ and $K_{b}$.

Ex. - To find the $\mathrm{K}_{\mathrm{a}}$ value for $\mathrm{HSO}_{3}{ }^{-}$look down the left-hand side of the table (acid side) and find $\mathrm{HSO}_{3}{ }^{-}$.

Ex. 2-To find the $\mathrm{K}_{\mathrm{b}}$ value for $\mathrm{HSO}_{3}{ }^{-}$look down the right-hand side of the table (base side) and find $\mathrm{H}_{2} \mathrm{SO}_{3}{ }^{-}$.

## Relative Strengths of Acids and Bases

- If solutions of $\mathrm{HC}_{2} \mathrm{O}_{4}$ and $\mathrm{HCO}_{3}$ - are mixed we need to be warry. Both are amphiprotic!
- $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$is higher on the chart meaning it is the stronger acid. This forces the $\mathrm{HCO}_{3}{ }^{-}$to be the base. The following equilibrium is set up:

- Notice how there are competing acids in equilibrium, $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$and $\mathrm{H}_{2} \mathrm{CO}_{3}$, each of which can donate a proton. Which direction is the predominant/reaction????
- Compare the acids on the chart. Higher will drive reaction away from itself (forward direction, products favoured).
- This can be shown mathematically as well. $\quad K_{\text {eq }}=\frac{K_{a}(\text { reactant acid })}{K_{a}(\text { product acid })}$

$$
K_{e q}=\frac{6.4 \times 10^{-5}}{4.3 \times 10^{-7}}=\frac{[\text { products }]}{[\text { reactants }]} \quad K_{\text {eq }}=1.5 \times 10^{2} \quad K_{\text {eq }}>1 \text { means products favoured. }
$$

Summary $\rightarrow$

$$
\text { So } \ldots . \quad \frac{[\text { products }]}{[\text { reactants }]}=K_{e q}=\frac{K_{a}(\text { reactant acid })}{K_{a}(\text { product acid })}
$$

Ex. - What is the predominant reaction between dihydrogen citrate ion and hydrogen sulphate ion?

## pH and pOH

- Definitions:
1.) $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
2.) $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
- pH is a term used to describe the strength of acids and pOH is used for bases. The "p" of pH comes from the German for "power" or "potency" and the "H" of pH is of course for the proton.
- This naming makes sense then as the pH scale is a logarithmic scale of the [protons] or [hydroxide] depending on whether you are talking about acids or bases respectively.
- Logarithm or simply logs are the amounts of base 10 needed to give the value you seek. More simply it's how many 10's multiplied together give you your requested value.

$$
\text { Ex. }-\log \text { of } 1000 ? \quad 10 \times 10 \times 10=1000 \text { so } \ldots \text { the } \log \text { of } 1000 \text { is } 3(3 \text { tens make } 1000)
$$

- The reverse of addition is subtraction. The reverse of a log is an antilog.
- So, if $\log (1000)=3$ then $\operatorname{antilog}(3)=1000$
**Reminder** when bases are the same in math you can add exponents.

$$
\text { Ex. }-\log \left(10^{x} \times 10^{y}\right)=\log \left(10^{x}\right)+\log \left(10^{y}\right)
$$

- How do we convert $\mathrm{a}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$to pH and pOH ?

Ex. $1-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.94 \times 10^{-4} \mathrm{M}$, what is the pH ?

Ex. $2-\left[\mathrm{OH}^{-}\right]=9.51 \times 10^{-12} \mathrm{M}$, what is the pOH ?
***Note*** In $\mathrm{pH} / \mathrm{pOH}$ calculations only the values after the decimal are accurate!!! Be careful!!!!!

- How do we convert a pH and pOH to $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$?
(Hint - do the reverse math!) $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})$
Ex. 1 - If pH is 3.405 , then what is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?

Ex. 2-If pOH is 11.022 , then what is the $\left[\mathrm{OH}^{-}\right]$?

- There clearly must be a connection between pH and pOH as well as [ $\mathrm{H}_{3} \mathrm{O}^{+}$] and [ $\mathrm{OH}^{-}$]. Yes!! But first . . .

$$
p H+p O H=14
$$

- Any of the four corner vales below can be calculated given any of the other values using the relationship.


Ex. 1-pH is 11.59 , what is pOH ?
Ex. 2-pH is 4.59, what is $\left[\mathrm{OH}^{-}\right]$?
***Note***

$$
\begin{gathered}
\boldsymbol{p} \boldsymbol{K}_{w}=-\log \left(\boldsymbol{K}_{w}\right)=-\log \left(1.00 \times 10^{-14}\right) \text { so } \boldsymbol{p} \boldsymbol{K}_{w}=\mathbf{1 4 . 0 0 0} \text {, at } 25^{\circ} \mathrm{C} \\
p \boldsymbol{K}_{w}=\boldsymbol{p H}+\boldsymbol{p O H}
\end{gathered}
$$

## The pH Scale

- The levels of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$are very small in solution. The pH scale is a logarithmic scale that is designed to be an easier way of conveying the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$.

- Notice that neutral (neither acid or base) is in the middle at $7=p H=p O H$.
- pH scale is dependent on $K_{w}=K_{\text {eq }}$. As such this scale IS temperature dependent. If you raise the temperature the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$will increase. This is a decrease (more acidic) on the pH scale.
- If you mix 30.0 mL 0.12 M HCl with 40.0 mL 0.10 NaOH what will be the resulting pH ?
1.) Equations -
2.) Dilution Calculation -
3.) Calculate excess -
4.) Calculate pH -
- Ex. - How many moles of $\mathrm{HCl}(\mathrm{g})$ must be added to 40.0 mL 0.180 M NaOH to make a solution with a $p H=12.500$.

Answer - this is essentially the same question in reverse!
1.) Equations -
2.) Calculate pOH -
3.) Calculate excess -
4.) Moles of acid -

## Hydrolysis

- Hydrolysis comes from the words "hydro" (water) "lysis" (to cut). Hydrolysis reactions typically are the "cutting out" of water or the removal of a water from a chemical.
- In Chemistry 12 we will be looking at the hydrolysis of salts. This is a reaction between water and the cation or anion of a salt to produce an acidic or basic solution.
***Note
In this section we will be focused on the reaction between ions and water and NOT
the reaction that may occur between the ions themselves.
- The conjugates of strong acids/bases are ALWAYS spectator ions.

Ex. $-\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$The $\mathrm{Na}^{+}$cannot reform NaOH (reverse reaction) as NaOH is a strong base and fully ionizes.

- To solve problems involving hydrolysis follow the following steps:
1.) Dissociate the salt $\quad \mathrm{NaNO}_{2} \rightarrow \mathrm{Na}^{+}+\mathrm{NO}_{2}{ }^{-}$
2.) Discard the spectator ions

- All cations from alkali and alkaline earth $\rightarrow \mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}, \mathrm{Be}^{+2}, \mathrm{Mg}^{+2}, \mathrm{Ca}^{+2}, \mathrm{Sr}^{+2}, \mathrm{Ba}^{+2}$
- Anions of the top 6 rows on the $\mathrm{K}_{\mathrm{a}}$ chart (strong acids) $\rightarrow \mathrm{ClO}_{4}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{SO}_{4}^{-}$
3.) Determine which side of the acid/base chart your ion is on. base
4.) Produce the hydrolysis reaction
$\mathrm{NO}_{2}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HNO}_{2}+\mathrm{OH}^{-}$

Ex. $-\mathrm{NH}_{4} \mathrm{Cl}$
Answer -

Ex. $2-\mathrm{NaHC}_{2} \mathrm{O}_{4}$
Answer -

Ex. $3-\mathrm{NH}_{4} \mathrm{NO}_{2}$
Answer -

## Calculations Involving $\mathrm{K}_{a}$ and $\mathrm{K}_{b}$

- Weak acids (HA) and bases ( $A^{-}$) are out into water, they only partially ionize.
- The smaller the $\mathrm{K}_{\mathrm{a}}$ the smaller the amount ionizing into $\mathrm{H}_{3} \mathrm{O}^{+}$for acids and $\mathrm{OH}^{-}$for bases.
- Since the acid/base does not ionize until contact with water, an old friend is best for solving. ("old friend" means ICE box!)
- When solving questions regarding weak acids/bases there are three major pieces of information:
1.) $[H A]$ or $[H b]$, depending on which type of solution (the original acid/base concentration).
2.) $K_{a}$ or $K_{b}$, depending again on the solution.
3.) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{OH}^{-}\right]$or $\mathrm{pH} / \mathrm{POH}$, depending on solution.
- There are also three types of problems that you could be asked to solve:


## Acids

1.) given $[\mathrm{HA}]$ and $\mathrm{Ka}_{\mathrm{a}}$, find $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$(or pH )
2.) given $[\mathrm{HA}]$ and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$(or pH), find $\mathrm{K}_{\mathrm{a}}$
3.) given $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$(or pH) and Ka , find $[\mathrm{HA}]$

## Bases

given $\left[A^{-}\right]$and $K_{a}$ (you calculate $\mathrm{K}_{b}$ ), find $\left[\mathrm{OH}^{-}\right.$] (or pOH ) given $\left[\mathrm{A}^{-}\right]$and $\left[\mathrm{OH}^{-}\right]$(or pOH ), find $\mathrm{K}_{\mathrm{b}}$ given $\left[\mathrm{OH}^{-}\right]$(or pOH) and $\mathrm{K}_{a}$ (you calculate $\mathrm{K}_{\mathrm{b}}$ ), find [ $\mathrm{A}^{-}$]

- Ex. 1 - If $K_{a}=1.8 \times 10^{-5}$ for $\mathrm{CH}_{3} \mathrm{COOH}$, what is the pH of a 0.500 M solution of $\mathrm{CH}_{3} \mathrm{COOH}$ ? Answer - 1.) List known and asked for to allow you to figure out the procedure for solving.
2.) Write acid ionization equation.

3.) Write the $K_{a}$ expression and write your assumption. You must write out your assumption.
4.) Solve the equation using the assumption.

Ex. 2- If $p H=1.70$ for a 0.100 M solution of an unknown weak acid, what is the $K_{a}$ ?
Answer - 1.) List known and asked for to allow you to figure out the procedure for solving.
2.) Write acid ionization equation.


3a.) Use pH to solve for $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.
b.) Write the $K_{a}$ expression and check your assumption.
4.) Solve the equation.

Ex. 3 - How many grams of $\mathrm{NH}_{4} \mathrm{Cl}$ will make 1.50 L of solution with a $\mathrm{pH}=4.75$ ?
Answer - 1.) List known and asked for to allow you to figure out the procedure for solving.
2.) Write acid ionization equation.

| I |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| $C$ |  |  |  |  |
| $E$ |  |  |  |  |

3a.) Use pH to solve for $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.
b.) Write the $K_{a}$ expression and write your assumption. You must write out your assumption.
4.) Solve the equation using the assumption.

Ex. 4-What is the pH of a 0.10 M solution of NaCN ?
Answer - 1.) List known and asked for to allow you to figure out the procedure for solving.
2.) Write base ionization equation.


3a.) Use $K_{a}$ to solve for $K_{b}$.
b.) Write the $\underline{K}_{b}$ expression and write your assumption. You must write out your assumption.
4.) Solve the equation using the assumption.

## Acid/Base Titrations

- Review - titration is a process in which a measured amount of a solution is reacted with a known volume of another solution, in an effort to discern an unknown concentration, until a desired equivalence point (stoichiometric point) is reached.
- The point in a titration reaction when the acid/base neutralize each other is known as the "end point".
- The "titrant" is the chemical of known concentration that is being used to discover the unknown chemicals concentration. The equivalence point is the point when the moles of reactant chemicals are equal to the ratio of the balanced equation.
- Titration questions involve 5 main parts. You will need to solve for the missing part in a given question.
1.) concentration of acid
2.) volume of acid
3.) concentration of base
4.) volume of base
5.) acid/base mole ratio
- There are always three parts to the question:

1. Calculate the moles of the chemical given.
2. Use the acid/base mole ratio (hello, Chem 11!!) to calculate the moles of the second chemical.
3.) Use the moles of the second substance to solve for the volume or concentration (whichever is needed).

Ex. 1-23.10 mL of 0.2055 M NaOH was added to $25.00 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}$ to reach the equivalence point. What is the
$\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$ in the following reaction: $\quad \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Answer - Solve for moles

Solve for second chemical

Solve for [second chemical]

Ex. 2-25.00 mL of 0.1255 M NaOH was added to 38.74 mL of $0.02700 \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ to reach the equivalence point. How many of the polyprotic protons are removed from the $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$, and what is the balanced equation? Answer - Solve for moles

Solve for second chemical

Solve for difference

Ex. 3 - An 3.4786 g impure sample of $\mathrm{NaHSO}_{4}$ is added to 250.0 mL of water. 0.02500 L sample was titrated using 0.02677 L of 0.09974 M NaOH . What is the percent purity of the acid?

Answer - Solve for moles

Solve for second chemical

Solve for molarity

Solve for theoretical

Solve percent purity

## Indicators

Indicators are weak organic acids and bases that have different colours between the conjugate acid and base.

- The names of these indicators are long and complex. As such, they are often abbreviated by "HIn" as in H for acid with In for indicator.

Ex. - $\mathrm{HIn}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{In}+\mathrm{H}_{3} \mathrm{O}^{+}$

- When the indicator is added to an acid the excess $\mathrm{H}_{3} \mathrm{O}^{+}$shifts the equilibrium left (yellow colour). What this tells us is the indicator is in its conjugate acid form when in highly acidic solutions.

When the indicator is added to a base the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is very low so the equilibrium shifts right (red colour). What this tells us is the indicator is in its conjugate base form when in highly basic solutions.

If a base is added to an acid solution then at some point the [HIn] $=\left[\mathrm{In}^{-}\right]$. At this point the yellow and red molecules will be equal and the colour seen is orange. This is called end point or transition point.

$$
\text { So } \ldots \text { at the endpoint } \rightarrow \quad K_{a}=\frac{\left[H _ { 3 } O ^ { + } \left[\left[n^{-}\right]\right.\right.}{[H I n]}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad \text { since }[\mathrm{HIn}]=\left[\mathrm{In}^{-}\right]
$$

$\square$
So .... at the endpoint $\rightarrow$
$p K_{a}=-\log K_{a}$
$K_{a}=\left[H_{3} \mathrm{O}^{+}\right]$
$p K_{a}=p H$

- Ex. - Methyl orange changes colour in a pH range from 3.2-4.4. What is the $\mathrm{K}_{a}$ of methyl orange? Answer -
- Ex. - Alizarin yellow R changes colour from yellow to red at $p H=11.0$. If Aliz ion is red, what colour is Alizarin Yellow R in $1.0 \times 10^{-5} \mathrm{M} \mathrm{NaOH}$ ?


## Answer -

- A universal indicator is an indicator that changes a variety of colours depending on the pH .


## More on Titrations

- To do a titration you need a $\qquad$ that is, a solution of known concentration. This standard solution is used to titrate unknown solutions.
- To make a standardized solution you need to use a chemical that is both stable (won' $\dagger$ absorb water or react with air) and pure. This substance is commonly referred to as a $\qquad$ .
- The most common acidic primary standards are:

1. potassium hydrogen phthalate, $\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$ (monoprotic acid). Phenolphthalein is an excellent indicator
2. oxalic acid dihydrate, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (diprotic acid). Phenolphthalein is the preferred indicator.

The most common basic primary standard is:
sodium bicarbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (diprotic base). Methyl orange is a good choice for indicator.

## Solving Titrations

This section will help you predict approximate $\mathrm{pK}_{a}$ values to adequately choose indicators for titrations.
Strong Acid with a Strong Base titrations $\leftarrow$ understand that the acid is being titrated by the base!!

1. Typical shape of titration graph

- A strong acid and base will result in a neutral solution. As such, an indicator that changes pH around 7 ( $p K_{a}=7$ ) is best.

2. Weak Acid with a Strong Base titrations


- The weak acid and strong base generally result in basic solution.
** The value of $\mathrm{K}_{\mathrm{a}}$ can be found using the following equation $K_{a}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{1 / 2}$ where $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{1 / 2}$ is from $p \mathrm{H}_{1 / 2}$
** The molarity of a weak acid at equilibrium, [HA], can be found from the equation

$$
[H A]_{\text {equ }}=\frac{\left[H_{3} O^{+}\right]^{2}}{K_{a}} \quad \text { where }\left[\mathrm{H}_{3} O^{+}\right] \text {is from } \mathrm{pH} H_{\text {init }}
$$

Ex. - The following information was recorded from the titration of the weak acid furoic acid $\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}\right) \mathrm{COOH}$ with NaOH .

| Furoic acid volume | 25.0 mL |
| :---: | :---: |
| NaOH volume at equivalence point | 28.8 mL |
| Initial pH of acid | 2.021 |
| pH at halfway point $(14.4 \mathrm{~mL})$ | 3.170 |

a.) Calculate the $K_{a}$ of the acid.

Answer -
b.) Calculate the $[H A]_{\text {init }}$.

Answer -
c.) Calculate the $[\mathrm{NaOH}]$.

Answer -
d.) Is the titrate solution acid, basic, or neutral at the equivalence point?

Answer -
e.) What is a good indicator for this titration?

Answer -

## 3. Weak Base with a Strong Acid titrations



- The weak base with a strong acid generally results in an acid solution.
*** Note - the above graph gives pH values BUT POH values are required for all calculations. So, the first step will always be to convert to pOH values.
** The value of $\mathrm{K}_{\mathrm{b}}$ can be found using the following equation $\mathrm{K}_{b}=\left[\mathrm{OH}^{-}\right]_{1 / 2}$ where $\left[\mathrm{OH}^{-}\right]_{1 / 2}$ is from $p H_{1 / 2}$
** The molarity of a weak base at equilibrium, $\left[A^{-}\right]$, can be found from the equation

$$
\left[A^{-}\right]_{\text {equ }}=\frac{\left[O H^{-}\right]^{2}}{K_{b}} \quad \text { where }\left[\mathrm{OH}^{-}\right] \text {is from } \mathrm{pOH} H_{\text {init }}
$$

Ex. - The following information was recorded from the titration of the weak monoprotic base ethylamine with HCl .

| ethylamine volume | 25.00 mL |
| :---: | :---: |
| HCl volume at equivalence point | 19.22 mL |
| Initial pH of base | 11.855 |
| pH at halfway point $(9.60 \mathrm{~mL})$ | 10.807 |

a.) Calculate the $K_{b}$ of the base.

## Answer -

b.) Calculate the $\left[A^{-}\right]_{\text {init. }}$.

Answer -
c.) Calculate the $[\mathrm{HCl}]$.

Answer -
d.) What is a good indicator for this titration?

Answer -

## Buffers

A buffer is a solution consisting of a substantial amount of $\qquad$ and its conjugate $\qquad$ -.

- To make a buffer you need to mix both the acid and the base in water.

Ex. - $\quad \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad K_{a}=\frac{\left[\mathrm{CH} \mathrm{H}_{3} \mathrm{COO}-\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH} \mathrm{H}_{3} \mathrm{COOH}\right]}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad K_{a}=1.8 \times 10^{-5}$
1 M 1 M

## Conclusion

If equal amounts of weak acid and its conjugate base are mixed with water, the pH will equal the $\mathrm{pK}_{\mathrm{a}}$ of the weak acid.

Typically, when acids and bases are diluted the pH's are changed. However, if a buffer is diluted the pH

- The purpose of creating a buffer solution is to minimize pH changes when an acid or base is added to the solution.
- Adding 10\% more acid to a solution would typically result in a pH change of 6 . In a typical buffer solution, the pH would only change by 0.08 !

This "buffering effect" is caused by the ratio , which doesn' $t$ change much when small amounts of acid or base are added.

When $\mathrm{H}_{3} \mathrm{O}^{+}$is added (acid) $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \quad$ (buffers neutralize added $\mathrm{H}_{3} \mathrm{O}^{+}$)
When $\mathrm{OH}^{-}$is added (base) $\quad \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \quad$ (buffers neutralize added $\mathrm{OH}^{-}$)

- Acid buffer example

Mixing $1.0 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid) and $1.0 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COO}^{-}$(sodium acetate) in 1.0 L of water.
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad K_{a}=1.8 \times 10^{-5}$
This solution "buffers" the pH around $\quad p H=p K_{a}=-\log \left[1.8 \times 10^{-5}\right] \quad p H=4.74$

## Base buffer example

Mixing $1.0 \mathrm{~mol} \mathrm{NH}_{3}$ (ammonia) and $1.0 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}$ (ammonium nitrate) in 1.0 L of water.
Since $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{NO}_{3}^{-}$and $\mathrm{NO}_{3}{ }^{-}$is a spectator, the following equilibrium is set up
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \quad K_{a}=5.6 \times 10^{-10}$
This solution "buffers" the pH around $\quad p H=p K_{a}=-\log \left[5.6 \times 10^{-10}\right] \quad p H=9.25$

- The importance of the above shows that the buffer solution needs to be set up near the pH you are trying to keep. Different buffers will buffer at different pH.
- End note $\rightarrow$ when a weak acid or base is titrated, a buffer solution will be established in the middle of the titration curve $\left(\mathrm{pH}_{1 / 2}\right)$ !

Where are buffers used?
1.) Haemoglobin of the blood.

$$
\mathrm{HHb}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HbO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \text { blood } p H=7.35
$$

Haemoglobin oxyhaemoglobin

- If you eat a tomato or lemon, without a buffer in your blood, the increased acid level would drive the above reaction to the left (Le Chatelier), deceasing the $\mathrm{HbO}_{2}^{-}$level, resulting in passing out (death).
2.) Lakes naturally have a buffer system from the minerals in the surrounding rocks and soil.

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

- Business and automobiles produce $\mathrm{SO}_{2}, \mathrm{SO}_{3}, \mathrm{NO}_{2}, \mathrm{NO}_{3}$ or more commonly known as $\mathrm{SO}_{x}$ and $\mathrm{NO}_{x}$. These dissolve into precipitation and produce $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{HNO}_{2}, \mathrm{HNO}_{3}$ (acids).

Metal and Non-metal Oxides
As seen above, lakes become acidified from covalent oxides (non-metal oxides) dissolve into water (precipitation) to form acids. Ex. $-\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ (sulphuric acid)

$$
\left.\begin{array}{l}
\text { Ex. }-\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3} \text { (sulphurous acid) } \quad[\text { Need to know grade } 12 \\
\text { Ex. }-\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \text { (carbonic acid) }
\end{array}\right] \quad\left[\begin{array}{l}
\text { and }
\end{array}\right.
$$

When ionic metal oxides are added to water they form basic solutions. For grade 12 we will only concern ourselves with the alkali and alkaline earth metal oxides.

$$
\begin{aligned}
& \text { Ex. }-\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH} \\
& \text { Ex. }-\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}
\end{aligned}
$$

