Handout - The Mole

- The mole is a scientist's way of expressing an amount. This is often done by non-scientists as well. Ex. -
- Technically, the mole is the number of carbon atoms in exactly $12 g$ of carbon.
- So, if individual atoms have different weights how can I equally react them? Well, if we use the example above, we know that gas B is 16 times heavier I need 16 times as much of gas B for them to react equally, IF THE ATOMS OF BOTH GASES WERE BOTH A MASS OF 1. However, we know that different atoms weigh different amounts because the protons and neutrons are different. Hmmm, we seem to be stuck.
- We know that carbon has 6 protons and 6 neutrons which equal 12 atomic mass units (amu). If we compare this to magnesium which is 12 protons and 12 neutrons which equal 24 amu . So it looks like magnesium is twice the weight of carbon when we look at the atoms. Couldn't we just change the units from amu to g . If we do it for all elements then the RATIO of the masses of the elements won't change. Yah!
- We can now say that 12 amu is equal to 12 grams!
- Putting a g beside atomic mass allows us to use masses from the periodic table.
*** Therefore -12 g of $\mathrm{C}=1 \mathrm{~mol}$ Carbon
- So what we're saying is that 1 mole of an element has a mass equal to the atomic mass in GRAMS!
- The mass of one mole is referred to as the \qquad
- Avogadro's hypothesis -

Ex. -

- Avogadro's discovery of gases allows us to connect the moles of a gas to an actual amount of atoms found in the mole.
- Avogadro found that in 1 mole of any element there is 6.022×10^{23} molecules.

Ex. - Fluorine has an atomic mass of 19.0 amu so that means in 19 g of fluorine or 1 mole of fluorine there is $=6.022 \times 10^{23}$ molecules of fluorine.

- What is the molar mass of water?
$\mathrm{H}_{2} \mathrm{O}=\frac{2 \times \mathrm{H}}{1 \times 0}=\frac{2 \times 1.01}{1 \times 16.00}=\frac{2.02}{+16.00}=18.0 \mathrm{grams}$
- Calculate the molar mass of

Ex. - $\quad \mathrm{CO}_{2}=(1 \times C)+(2 \times 0)=(1 \times 12.01)+(2 \times 16.00)=44.01 \mathrm{~g}$
Ex. 2- $\mathrm{NH}_{4} \mathrm{Cl}=$

Ex. 3- $\mathrm{CaBr}_{2}=$

Ex. 4- $\quad \mathrm{Al}(\mathrm{OH})_{3}=$

- Now that we can find out how many grams equal 1 mole for each element we can use this value to calculate the amount of particles (atoms or molecules) that make up that mass.
- Using Avogadro's number $\left(6.022 \times 10^{23}\right)$ will allow us to do this.
1.)
2.)
*****DON'T FORGET - WHEN IN DOUBT AT WHAT TO DO, CHANGE TO MOLES!!!!!*****

Ex. - How many grams of CCl_{4} is in 2.5 moles of CCl_{4} ?

Answer -

Ex. 3 - How many atoms of Carbon are in 16.2 g of Carbon? Answer -

Ex. 4 - How many atoms are in 16.4 g of $\mathrm{Li}_{2} \mathrm{SO}_{4}$? Answer -

Ex. 5 - How many grams of Nitrogen in 4.16×10^{24} molecules NO_{2} ? Answer -

Ex. 6 - How many molecules of $\mathrm{N}_{2} \mathrm{O}_{4}$ do you have if there are 12.4 g of Nitrogen?

Answer -

