1.) Balance METALS first.

$$
\ldots \mathrm{CoBr}_{3}+\ldots \mathrm{CaSO}_{4} \rightarrow \ldots \mathrm{CaBr}_{2}+\ldots \mathrm{CO}_{2}\left(\mathrm{SO}_{4}\right)_{3}
$$

2.) Balance elements that occur in more than 2 places LAST!

$$
\ldots \mathrm{SnS}_{2}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{Sn}_{2} \mathrm{O}_{3}+\ldots \mathrm{SO}_{2}
$$

3.) Balance elements in order of simplest possibility to next simplest possibility and so on.
\qquad $\mathrm{FeCl}_{2}+$ \qquad $\mathrm{Li}_{3} \mathrm{PO}_{4} \rightarrow$ \qquad $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}+$ \qquad LiCl
4.) Look for related coefficients and balance two or more things at one time.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\ldots \ldots \mathrm{C}^{+} \mathrm{SO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}+\ldots \mathrm{CO}_{2}
$$

5.) Balance isolated elements (singletons) last.

Ex.) C above in rule 4 (you will never mess anything else up!)
6.) If you run into an odd/even problem you can use fractions temporarily, and then multiply by the denominator to eliminate the fraction.

$$
\ldots \mathrm{C}_{6} \mathrm{H}_{14}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

7.) If there are polyatomic ions, do NOT break into elements and balance, balance the polyatomic ion like it is a single element.

$$
\ldots \quad \mathrm{Al}+\ldots \ldots \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \ldots \quad \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+\ldots \ldots \mathrm{Pb}
$$

